Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Model ; 28(2): 33, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35018503

ABSTRACT

In response to the Comment on "Density Functional Theory and 3D-RISM-KH molecular theory of solvation studies of CO2 reduction on Cu-, Cu2O-, Fe-, and Fe3O4-based nanocatalysts" (Gusarov J Mol Model 27:344-344, 1), the behavior of a CO* molecule on a Cu21 nanocatalyst slab without a solution considered in the Comment is considerably different from our case of this system in 1.0 Mol KH2PO4 ambient aqueous solution. Moreover, our calculations for CO* on Cu21 without a solution that we presented in our article are similar to those shown in the Comment. The Comment and its conclusions are controversial and should be treated with much caution.

2.
J Mol Model ; 26(10): 267, 2020 Sep 12.
Article in English | MEDLINE | ID: mdl-32918619

ABSTRACT

Using OpenMX quantum chemistry software for self-consistent field calculations of electronic structure with geometry optimization and 3D-RISM-KH molecular theory of solvation for 3D site distribution functions and solvation free energy, we modeled the reduction of CO2+H2 in ambient aqueous electrolyte solution of 1.0-M KH2PO4 into (i) formic acid HCOOH and (ii) CO H2O on the surfaces of Cu-, Fe-, Cu2O-, and Fe3O4-based nanocatalysts. It is applicable to its further reduction to hydrocarbons. The optimized geometries and free energies were obtained for the pathways of adsorption of the reactants from the solution, successive reduction on the surfaces of the nanocatalysts, and then release back to the solution bulk.

3.
Nanomaterials (Basel) ; 10(9)2020 Sep 20.
Article in English | MEDLINE | ID: mdl-32962288

ABSTRACT

Rising anthropogenic CO2 emissions and their climate warming effects have triggered a global response in research and development to reduce the emissions of this harmful greenhouse gas. The use of CO2 as a feedstock for the production of value-added fuels and chemicals is a promising pathway for development of renewable energy storage and reduction of carbon emissions. Electrochemical CO2 conversion offers a promising route for value-added products. Considerable challenges still remain, limiting this technology for industrial deployment. This work reviews the latest developments in experimental and modeling studies of three-dimensional cathodes towards high-performance electrochemical reduction of CO2. The fabrication-microstructure-performance relationships of electrodes are examined from the macro- to nanoscale. Furthermore, future challenges, perspectives and recommendations for high-performance cathodes are also presented.

SELECTION OF CITATIONS
SEARCH DETAIL
...