Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 11(11): e0166937, 2016.
Article in English | MEDLINE | ID: mdl-27875575

ABSTRACT

Many audio applications perform perception-based time-frequency (TF) analysis by decomposing sounds into a set of functions with good TF localization (i.e. with a small essential support in the TF domain) using TF transforms and applying psychoacoustic models of auditory masking to the transform coefficients. To accurately predict masking interactions between coefficients, the TF properties of the model should match those of the transform. This involves having masking data for stimuli with good TF localization. However, little is known about TF masking for mathematically well-localized signals. Most existing masking studies used stimuli that are broad in time and/or frequency and few studies involved TF conditions. Consequently, the present study had two goals. The first was to collect TF masking data for well-localized stimuli in humans. Masker and target were 10-ms Gaussian-shaped sinusoids with a bandwidth of approximately one critical band. The overall pattern of results is qualitatively similar to existing data for long maskers. To facilitate implementation in audio processing algorithms, a dataset provides the measured TF masking function. The second goal was to assess the potential effect of auditory efferents on TF masking using a modeling approach. The temporal window model of masking was used to predict present and existing data in two configurations: (1) with standard model parameters (i.e. without efferents), (2) with cochlear gain reduction to simulate the activation of efferents. The ability of the model to predict the present data was quite good with the standard configuration but highly degraded with gain reduction. Conversely, the ability of the model to predict existing data for long maskers was better with than without gain reduction. Overall, the model predictions suggest that TF masking can be affected by efferent (or other) effects that reduce cochlear gain. Such effects were avoided in the experiment of this study by using maximally-compact stimuli.


Subject(s)
Models, Biological , Pitch Perception/physiology , Sound Localization/physiology , Female , Humans , Male
2.
J Acoust Soc Am ; 140(4): 2680, 2016 10.
Article in English | MEDLINE | ID: mdl-27794305

ABSTRACT

Peripheral compression is believed to play a major role in the masker phase effect (MPE). While compression is almost instantaneous, activation of the efferent system reduces compression in a temporally evolving manner. To study the role of efferent-controlled compression in the MPE, in experiment 1, simultaneous masking of a 30-ms 4-kHz tone by 40-ms Schroeder-phase harmonic complexes was measured with on- and off-frequency precursors as a function of masker phase curvature for two masker levels (60 and 90 dB sound pressure level). The MPE was quantified by the threshold range [min/max difference (MMD)] across the phase curvatures. For the 60-dB condition, the presence of on-frequency precursor decreased the MMD from 10 to 5 dB. Experiment 2 studied the role of the precursor on the auditory filter's bandwidth. The on-frequency precursor was found to increase the bandwidth, an effect incorporated in the subsequent modeling. A model of the auditory periphery including cochlear filtering and basilar membrane compression generally underestimated the MMDs. A model based on two-step compression, including compression of inner hair cells, accounted for the MMDs across precursor and level conditions. Overall, the observed precursor effects and the model predictions suggest an important role of compression in the simultaneous MPE.

3.
J Acoust Soc Am ; 134(2): 1160-71, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23927115

ABSTRACT

Laback et al. [(2011). J. Acoust. Soc. Am. 129, 888-897] investigated the additivity of nonsimultaneous masking using short Gaussian-shaped tones as maskers and target. The present study involved Gaussian stimuli to measure the additivity of simultaneous masking for combinations of up to four spectrally separated maskers. According to most basilar membrane measurements, the maskers should be processed linearly at the characteristic frequency (CF) of the target. Assuming also compression of the target, all masker combinations should produce excess masking (exceeding linear additivity). The results for a pair of maskers flanking the target indeed showed excess masking. The amount of excess masking could be predicted by a model assuming summation of masker-evoked excitations in intensity units at the target CF and compression of the target, using compressive input/output functions derived from the nonsimultaneous masking study. However, the combinations of lower-frequency maskers showed much less excess masking than predicted by the model. This cannot easily be attributed to factors like off-frequency listening, combination tone perception, or between-masker suppression. It was better predicted, however, by assuming weighted intensity summation of masker excitations. The optimum weights for the lower-frequency maskers were smaller than one, consistent with partial masker compression as indicated by recent psychoacoustic data.


Subject(s)
Acoustic Stimulation/methods , Audiometry , Auditory Perception , Noise/adverse effects , Perceptual Masking , Auditory Threshold , Cues , Humans , Models, Psychological , Pressure , Psychoacoustics , Sound Spectrography , Time Factors
4.
J Acoust Soc Am ; 129(2): 888-97, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21361446

ABSTRACT

The additivity of nonsimultaneous masking was studied using Gaussian-shaped tone pulses (referred to as Gaussians) as masker and target stimuli. Combinations of up to four temporally separated Gaussian maskers with an equivalent rectangular bandwidth of 600 Hz and an equivalent rectangular duration of 1.7 ms were tested. Each masker was level-adjusted to produce approximately 8 dB of masking. Excess masking (exceeding linear additivity) was generally stronger than reported in the literature for longer maskers and comparable target levels. A model incorporating a compressive input/output function, followed by a linear summation stage, underestimated excess masking when using an input/output function derived from literature data for longer maskers and comparable target levels. The data could be predicted with a more compressive input/output function. Stronger compression may be explained by assuming that the Gaussian stimuli were too short to evoke the medial olivocochlear reflex (MOCR), whereas for longer maskers tested previously the MOCR caused reduced compression. Overall, the interpretation of the data suggests strong basilar membrane compression for very short stimuli.


Subject(s)
Auditory Pathways/physiology , Auditory Perception , Noise/adverse effects , Perceptual Masking , Signal Detection, Psychological , Acoustic Stimulation , Auditory Threshold , Humans , Models, Biological , Psychoacoustics , Sound Spectrography , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...