Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Pediatr Hematol Oncol ; 40(7): 522-526, 2018 10.
Article in English | MEDLINE | ID: mdl-30247288

ABSTRACT

PURPOSE/OBJECTIVES: There is little consensus regarding the application of stereotactic radiotherapy (SRT) in pediatrics. We evaluated patterns of pediatric SRT practice through an international research consortium. MATERIALS AND METHODS: Eight international institutions with pediatric expertise completed a 124-item survey evaluating patterns of SRT use for patients 21 years old and younger. Frequencies of SRT use and median margins applied with and without SRT were evaluated. RESULTS: Across institutions, 75% reported utilizing SRT in pediatrics. SRT was used in 22% of brain, 18% of spine, 16% of other bone, 16% of head and neck, and <1% of abdomen/pelvis, lung, and liver cases across sites. Of the hypofractionated SRT cases, 42% were delivered with definitive intent. Median gross tumor volume to planning target volume margins for SRT versus non-SRT plans were 0.2 versus 1.4 cm for brain, 0.3 versus 1.5 cm for spine/other bone, 0.3 versus 2.0 cm for abdomen/pelvis, 0.7 versus 1.5 cm for head and neck, 0.5 versus 1.7 cm for lung, and 0.5 versus 2.0 cm for liver sites. CONCLUSIONS: SRT is commonly utilized in pediatrics across a range of treatment sites. Margins used for SRT were substantially smaller than for non-SRT planning, highlighting the utility of this approach in reducing treatment volumes.


Subject(s)
Pediatrics/methods , Practice Patterns, Physicians' , Radiosurgery/methods , Adolescent , Child , Child, Preschool , Humans , Infant , Surveys and Questionnaires , Tumor Burden , Young Adult
2.
Pediatr Blood Cancer ; 64(11)2017 Nov.
Article in English | MEDLINE | ID: mdl-28696044

ABSTRACT

BACKGROUND/OBJECTIVES: The practice of palliative radiation therapy (RT) is based on extrapolation from adult literature. We evaluated patterns of pediatric palliative RT to describe regimens used to identify opportunity for future pediatric-specific clinical trials. DESIGN/METHODS: Six international institutions with pediatric expertise completed a 122-item survey evaluating patterns of palliative RT for patients ≤21 years old from 2010 to 2015. Two institutions use proton RT. Palliative RT was defined as treatment with the goal of symptom control or prevention of immediate life-threatening progression. RESULTS: Of 3,225 pediatric patients, 365 (11%) were treated with palliative intent to a total of 427 disease sites. Anesthesia was required in 10% of patients. Treatment was delivered to metastatic disease in 54% of patients. Histologies included neuroblastoma (30%), osteosarcoma (18%), leukemia/lymphoma (12%), rhabdomyosarcoma (12%), medulloblastoma/ependymoma (12%), Ewing sarcoma (8%), and other (8%). Indications included pain (43%), intracranial symptoms (23%), respiratory compromise (14%), cord compression (8%), and abdominal distention (6%). Sites included nonspine bone (35%), brain (16% primary tumors, 6% metastases), abdomen/pelvis (15%), spine (12%), head/neck (9%), and lung/mediastinum (5%). Re-irradiation comprised 16% of cases. Techniques employed three-dimensional conformal RT (41%), intensity-modulated RT (23%), conventional RT (26%), stereotactic body RT (6%), protons (1%), electrons (1%), and other (2%). The most common physician-reported barrier to consideration of palliative RT was the concern about treatment toxicity (83%). CONCLUSION: There is significant diversity of practice in pediatric palliative RT. Combined with ongoing research characterizing treatment response and toxicity, these data will inform the design of forthcoming clinical trials to establish effective regimens and minimize treatment toxicity for this patient population.


Subject(s)
Neoplasms/radiotherapy , Palliative Care , Practice Patterns, Physicians'/standards , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Adolescent , Adult , Child , Child, Preschool , Female , Follow-Up Studies , Humans , Infant , Infant, Newborn , International Agencies , Male , Neoplasm Staging , Neoplasms/pathology , Prognosis , Radiotherapy Dosage , Young Adult
3.
Pract Radiat Oncol ; 4(5): 336-341, 2014.
Article in English | MEDLINE | ID: mdl-25194103

ABSTRACT

PURPOSE: Image guided radiation therapy (IGRT) has become common practice for both photon and proton radiation therapy, but there is little consensus regarding its application in the pediatric population. We evaluated clinical patterns of pediatric IGRT practice through an international pediatrics consortium comprised of institutions using either photon or proton radiation therapy. METHODS AND MATERIALS: Seven international institutions with dedicated pediatric expertise completed a 53-item survey evaluating patterns of IGRT use in definitive radiation therapy for patients ≤21 years old. Two institutions use proton therapy for children and all others use IG photon therapy. Descriptive statistics including frequencies of IGRT use and means and standard deviations for planning target volume (PTV) margins by institution and treatment site were calculated. RESULTS: Approximately 750 pediatric patients were treated annually across the 7 institutions. IGRT was used in tumors of the central nervous system (98%), abdomen or pelvis (73%), head and neck (100%), lung (83%), and liver (69%). Photon institutions used kV cone beam computed tomography and kV- and MV-based planar imaging for IGRT, and all proton institutions used kV-based planar imaging; 57% of photon institutions used a specialized pediatric protocol for IGRT that delivers lower dose than standard adult protocols. Immobilization techniques varied by treatment site and institution. IGRT was utilized daily in 45% and weekly in 35% of cases. The PTV margin with use of IGRT ranged from 2 cm to 1 cm across treatment sites and institution. CONCLUSIONS: Use of IGRT in children was prevalent at all consortium institutions. There was treatment site-specific variability in IGRT use and technique across institutions, although practices varied less at proton facilities. Despite use of IGRT, there was no consensus of optimum PTV margin by treatment site. Given the desire to restrict any additional radiation exposure in children to instances where the exposure is associated with measureable benefit, prospective studies are warranted to optimize IGRT protocols by modality and treatment site.


Subject(s)
Cone-Beam Computed Tomography , Neoplasms/radiotherapy , Photons/therapeutic use , Practice Patterns, Physicians' , Proton Therapy , Radiotherapy, Image-Guided , Adult , Child , Follow-Up Studies , Humans , International Agencies , Neoplasms/diagnostic imaging , Prognosis , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated
SELECTION OF CITATIONS
SEARCH DETAIL
...