Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Gels ; 8(12)2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36547295

ABSTRACT

Global resources have to be used in responsible ways to ensure the world's future need for advanced materials. Ecologically friendly functional materials based on biopolymers can be successfully obtained from renewable resources, and the most prominent example is cellulose, the well-known most abundant polysaccharide which is usually isolated from highly available biomass (wood and wooden waste, annual plants, cotton, etc.). Many other polysaccharides originating from various natural resources (plants, insects, algae, bacteria) proved to be valuable and versatile starting biopolymers for a wide array of materials with tunable properties, able to respond to different societal demands. Polysaccharides properties vary depending on various factors (origin, harvesting, storage and transportation, strategy of further modification), but they can be processed into materials with high added value, as in the case of gels. Modern approaches have been employed to prepare (e.g., the use of ionic liquids as "green solvents") and characterize (NMR and FTIR spectroscopy, X ray diffraction spectrometry, DSC, electronic and atomic force microscopy, optical rotation, circular dichroism, rheological investigations, computer modelling and optimization) polysaccharide gels. In the present paper, some of the most widely used polysaccharide gels will be briefly reviewed with emphasis on their structural peculiarities under various conditions.

2.
Int J Biol Macromol ; 131: 828-849, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30872049

ABSTRACT

As fossil fuel resources dwindle and new regulations for a cleaner and safer environment come on stream, there is growing interest in developing new sustainable feedstocks for future fuels, chemicals, polymers and fibers. Therefore materials research is ever more focused on the production of green or bio-based materials and their composites. Lignocellulosic biomass has become the feedstock of choice for these new materials as cellulose and lignin are the most abundant biopolymers on the planet. Lignin is a phenolic macromolecule, the principal biological source of aromatic structures, with a complex structure which varies depending on plant species and its isolation process. Despite its high carbon content and its potential as a raw material, lignin remains underutilised. Between 40 and 50 million tons of lignin are produced worldwide per year; while some is being used for low- and medium-value applications, most is currently treated as a non-commercialized by-product or as low value fuel to produce energy. However, with the emergence of biorefinery projects larger amounts of lignin with the potential for valorisation are being produced. Here, we summarise some of the latest developments in the field.


Subject(s)
Bioengineering , Lignin/chemistry , Polymers/chemistry , Biopolymers , Chemical Fractionation , Lignin/isolation & purification
3.
J Biomater Sci Polym Ed ; 25(8): 749-65, 2014.
Article in English | MEDLINE | ID: mdl-24701975

ABSTRACT

To develop resin-modified glass ionomer materials, we synthesized methacrylate-functionalized acrylic copolymer (PAlk-LeuM) derived from acrylic acid, itaconic acid and N-acryloyl-L-leucine using (N-methacryloyloxyethylcarbamoyl-N'-4-hydroxybutyl) urea as the modifying agent. The spectroscopic (proton/carbon nuclear magnetic resonance, Fourier transform infrared spectroscopy) characteristics, and the gel permeation chromatography/Brookfield viscosity measurements were analysed and compared with those of the non-modified copolymer (PAlk-Leu). The photocurable copolymer (PAlk-LeuM, ~14 mol% methacrylate groups) and its precursor (PAlk-Leu) were incorporated in dental ionomer compositions besides diglycidyl methacrylate of bisphenol A (Bis-GMA) or an analogue of Bis-GMA (Bis-GMA-1), triethylene glycol dimethacrylate and 2-hydroxyethyl methacrylate. The kinetic data obtained by photo-differential scanning calorimetry showed that both the degree of conversion (60.50-75.62%) and the polymerization rate (0.07-0.14 s(-1)) depend mainly on the amount of copolymer (40-50 wt.%), and conversions over 70% were attained in the formulations with 40 wt.% PAlk-LeuM. To formulate light-curable cements, each organic composition was mixed with filler (90 wt.% fluoroaluminosilicate/10 wt.% hydroxyapatite) into a 2.7:1 ratio (powder/liquid ratio). The light-cured specimens exhibited flexural strength (FS), compressive strength (CS) and diametral tensile strength (DTS) varying between 28.08 and 64.79 MPa (FS), 103.68-147.13 MPa (CS) and 16.89-31.87 MPa (DTS). The best values for FS, CS and DTS were found for the materials with the lowest amount of PAlk-LeuM. Other properties such as the surface hardness, water sorption/water solubility, surface morphology and fluorescence caused by adding the fluorescein monomer were also evaluated.


Subject(s)
Dental Materials/chemistry , Leucine/chemistry , Methacrylates/chemistry , Photochemical Processes , Polymerization , Polymers/chemistry , Polymers/chemical synthesis , Chemistry Techniques, Synthetic , Chemistry, Pharmaceutical , Succinates/chemistry , Urea/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...