Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Neurosci ; 16: 943506, 2022.
Article in English | MEDLINE | ID: mdl-36212694

ABSTRACT

Functional recovery after peripheral nerve injuries is critically dependent on axonal regeneration. Several autonomous and non-cell autonomous processes regulate axonal regeneration, including the activation of a growth-associated transcriptional program in neurons and the reprogramming of differentiated Schwann cells (dSCs) into repair SCs (rSCs), triggering the secretion of neurotrophic factors and the activation of an inflammatory response. Repair Schwann cells also release pro-regenerative extracellular vesicles (EVs), but is still unknown whether EV secretion is regulated non-cell autonomously by the regenerating neuron. Interestingly, it has been described that nerve activity enhances axonal regeneration by increasing the secretion of neurotrophic factors by rSC, but whether this activity modulates pro-regenerative EV secretion by rSC has not yet been explored. Here, we demonstrate that neuronal activity enhances the release of rSC-derived EVs and their transfer to neurons. This effect is mediated by activation of P2Y receptors in SCs after activity-dependent ATP release from sensory neurons. Importantly, activation of P2Y in rSCs also increases the amount of miRNA-21 present in rSC-EVs. Taken together, our results demonstrate that neuron to glia communication by ATP-P2Y signaling regulates the content of SC-derived EVs and their transfer to axons, modulating axonal elongation in a non-cell autonomous manner.

2.
Front Bioeng Biotechnol ; 9: 796157, 2021.
Article in English | MEDLINE | ID: mdl-34976984

ABSTRACT

Oxygen is the key molecule for aerobic metabolism, but no animal cells can produce it, creating an extreme dependency on external supply. In contrast, microalgae are photosynthetic microorganisms, therefore, they are able to produce oxygen as plant cells do. As hypoxia is one of the main issues in organ transplantation, especially during preservation, the main goal of this work was to develop the first generation of perfusable photosynthetic solutions, exploring its feasibility for ex vivo organ preservation. Here, the microalgae Chlamydomonas reinhardtii was incorporated in a standard preservation solution, and key aspects such as alterations in cell size, oxygen production and survival were studied. Osmolarity and rheological features of the photosynthetic solution were comparable to human blood. In terms of functionality, the photosynthetic solution proved to be not harmful and to provide sufficient oxygen to support the metabolic requirement of zebrafish larvae and rat kidney slices. Thereafter, isolated porcine kidneys were perfused, and microalgae reached all renal vasculature, without inducing damage. After perfusion and flushing, no signs of tissue damage were detected, and recovered microalgae survived the process. Altogether, this work proposes the use of photosynthetic microorganisms as vascular oxygen factories to generate and deliver oxygen in isolated organs, representing a novel and promising strategy for organ preservation.

3.
J Cell Physiol ; 231(7): 1460-7, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26580584

ABSTRACT

Two distantly located promoter regions regulate the dynamic expression of RUNX genes during development: distal P1 and proximal P2 promoters. We have recently described that ß-catenin increases total Runx1 mRNA levels in human CD34(+) hematopoietic progenitors and enhances spatial proximity with its translocation partner ETO. Here, we report that induction of Wnt/ß-catenin signaling in HL60 and Jurkat leukemia-derived cell lines and CD34(+) progenitors selectively activate the production of the longer distal P1-Runx1 mRNA isoform. Gain- and loss-of-function experiments revealed that the differential increase in P1-Runx1 expression is accomplished through a minimal ß-catenin responsive region that includes a highly conserved TCF/LEF-binding element, located -20/-16 bp upstream of the canonical distal P1-Runx1 transcription start site. We conclude that the distal P1-Runx1 promoter is a direct transcriptional target of Wnt/ß-catenin signaling that may be important in normal hematopoiesis or its transition into malignant stem cells during the onset or progression of leukemia.


Subject(s)
Core Binding Factor Alpha 2 Subunit/genetics , Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , Leukemia/genetics , Core Binding Factor Alpha 2 Subunit/biosynthesis , Gene Expression Regulation, Developmental , Humans , Jurkat Cells , Leukemia/pathology , Promoter Regions, Genetic , Proto-Oncogene Proteins/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , RUNX1 Translocation Partner 1 Protein , Transcription Factors/genetics , Wnt Signaling Pathway , beta Catenin/genetics
4.
Blood ; 126(15): 1785-9, 2015 Oct 08.
Article in English | MEDLINE | ID: mdl-26333776

ABSTRACT

Chromosomal translocations are frequently associated with a wide variety of cancers, particularly hematologic malignancies. A recurrent chromosomal abnormality in acute myeloid leukemia is the reciprocal translocation t(8;21) that fuses RUNX1 and ETO genes. We report here that Wnt/ß-catenin signaling increases the expression of ETO and RUNX1 genes in human hematopoietic progenitors. We found that ß-catenin is rapidly recruited into RNA polymerase II transcription factories (RNAPII-Ser5) and that ETO and RUNX1 genes are brought into close spatial proximity upon Wnt3a induction. Notably, long-term treatment of cells with Wnt3a induces the generation a frequent RUNX1-ETO translocation event. Thus, Wnt/ß-catenin signaling induces transcription and translocation of RUNX1 and ETO fusion gene partners, opening a novel window to understand the onset/development of leukemia.


Subject(s)
Chromosome Aberrations , Gene Expression Regulation , Hematopoietic Stem Cells/metabolism , Oncogene Proteins, Fusion/genetics , Translocation, Genetic/genetics , Wnt Proteins/genetics , beta Catenin/genetics , Cells, Cultured , Chromosomes, Human, Pair 21/genetics , Chromosomes, Human, Pair 8/genetics , Core Binding Factor Alpha 2 Subunit/genetics , Fluorescent Antibody Technique , Hematopoietic Stem Cells/cytology , Humans , In Situ Hybridization, Fluorescence , Proto-Oncogene Proteins/genetics , RNA, Messenger/genetics , RUNX1 Translocation Partner 1 Protein , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...