Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38607122

ABSTRACT

During the manufacturing process of white wine, various physicochemical reactions can occur and can affect the quality of the finished product. For this reason, it is necessary to apply different treatments to minimize distinct factors such as protein instability and pinking phenomenon, which can affect the organoleptic properties of wines and their structure. In this work, a new method for the preparation of a sorbent-type material is presented through the fractional purification of native bentonite in three fractions (Na-BtF1, Na-BtF2, and Na-BtF3). Furthermore, the influence of the prepared sorbents on pH, conductivity, and amino nitrogen level was analyzed. The absorbents prepared and tested in wine solutions were characterized using the following physico-chemical methods: Brunauer-Emmett-Teller and Barrett-Joyner-Halenda (BET-BJH) method, X-ray diffraction (XRD) technique, and transform-coupled infrared spectroscopy Fourier with attenuated total reflection (FTIR-ATR). Following the analyses carried out on the retention of protein content and polyphenolic compounds, it was found that materials based on natural clay have suitable adsorption properties.

2.
Nanomaterials (Basel) ; 13(16)2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37630885

ABSTRACT

The presence of phthalic acid esters in wines presents a major risk to human health due to their very toxic metabolism. In this paper, aluminosilicate materials were used, with the aim of retaining various pollutants and unwanted compounds in wine. The pollutants tested were di-butyl and di-ethyl hexyl phthalates. They were tested and detected using the gas chromatography-mass spectrometry (CG-MS) analytical technique. Nanomaterials were prepared using sodium bentonite, and were chemically modified via impregnation using three types of Boltron dendrimers of second, third and fourth generations (NBtH20, NBtH30 and NBtH40). The synthesized nanomaterials were characterized using the Brunauer-Emmett-Teller (BET) method, Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis. In this paper, two aspects were addressed: the first related to the retention of phthalate-type pollutants (phthalic acid esters-PAEs) and the second related to the protein and polyphenol levels in the white wine of the Aligoté grape variety. The results obtained in this study have a major impact on PAEs in wine, especially after treatment with NBtH30 and NBtH40 (volumes of 250-500 µL/10 mL wine), with the retention of the pollutants being up to 85%.

3.
Polymers (Basel) ; 15(13)2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37447569

ABSTRACT

Pharmaceuticals are acknowledged as emerging contaminants in water resources. The concentration of pharmaceutical compounds in the environment has increased due to the rapid development of the pharmaceutical industry, the increasing use of human and veterinary drugs, and the ineffectiveness of conventional technologies to remove pharmaceutical compounds from water. The application of biomaterials derived from renewable resources in emerging pollutant removal techniques constitutes a new research direction in the field. In this context, the article reviews the literature on pharmaceutical removal from water sources using microbial biomass and natural polymers in biosorption or biodegradation processes. Microorganisms, in their active or inactive form, natural polymers and biocomposites based on inorganic materials, as well as microbial biomass immobilized or encapsulated in polymer matrix, were analyzed in this work. The review examines the benefits, limitations, and drawbacks of employing these biomaterials, as well as the prospects for future research and industrial implementation. From these points of view, current trends in the field are clearly reviewed. Finally, this study demonstrated how biocomposites made of natural polymers and microbial biomass suggest a viable adsorbent biomaterial for reducing environmental pollution that is also efficient, inexpensive, and sustainable.

4.
Int J Mol Sci ; 24(7)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37047465

ABSTRACT

The aim of this in vitro study was to analyze, both experimentally and theoretically, the mechanical behavior of two types of composite materials used in restoring dental integrity. The samples of each composite resin, namely Filtek Supreme XT (3M ESPE, St. Paul, MN, USA) and Filtek Z250 (3M ESPE, St. Paul, MN, USA), were experimentally analyzed by determining their compressive strength and fracture behavior. The fractured fragments of the samples were subjected to surface evaluation by scanning electron microscopy. The compressive stress-compressive strain dependencies revealed stronger cracking of the Filtek Supreme XT composite than Filtek Z250 prior to fracture. Theoretically, the evaluation was made by means of holographic implementations of such types of composite materials. A Hooke-type equation in a differential form is presented, which links the proposed theoretical model with the experimentally obtained data.


Subject(s)
Composite Resins , Fractures, Bone , Humans , Microscopy, Electron, Scanning , Materials Testing , Dental Materials , Surface Properties
5.
Materials (Basel) ; 16(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36837071

ABSTRACT

By assimilating shape memory alloys with mathematical multifractal-type objects, a theoretical model based on Scale Relativity Theory in the form of The Multifractal Theory of Motion, in order to explain the mechanical behavior of such material, is proposed. The model is validated by analyzing the mechanical behavior of Cu-Al-Zn shape memory alloy with various chemical compositions. More precisely, the multifractal tunnel effect can "mime" the mechanical hysteresis of such a material, a situation in which a direct correspondence for several mechanical properties of Cu-Al-Zn is highlighted (the chemical composition can be correlated with the shapes of the curves controlled through the multifractality degree, while the areas delimited by the same curves can be correlated with the multifractal specific potential, as a measure of the mechanical memory degree).

6.
Molecules ; 27(14)2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35889383

ABSTRACT

Drug delivery to the anterior or posterior segments of the eye is a major challenge due to the protection barriers and removal mechanisms associated with the unique anatomical and physiological nature of the ocular system. The paper presents the preparation and characterization of drug-loaded polymeric particulated systems based on pre-emulsion coated with biodegradable polymers. Low molecular weight biopolymers (chitosan, sodium hyaluronate and heparin sodium) were selected due to their ability to attach polymer chains to the surface of the growing system. The particulated systems with dimensions of 190-270 nm and a zeta potential varying from -37 mV to +24 mV depending on the biopolymer charges have been obtained. Current studies show that particles release drugs (dexamethasone/pilocarpine/bevacizumab) in a safe and effective manner, maintaining therapeutic concentration for a longer period of time. An extensive modeling study was performed in order to evaluate the drug release profile from the prepared systems. In a multifractal paradigm of motion, nonlinear behaviors of a drug delivery system are analyzed in the fractal theory of motion, in order to correlate the drug structure with polymer. Then, the functionality of a SL(2R) type "hidden symmetry" implies, through a Riccati type gauge, different "synchronization modes" (period doubling, damped oscillations, quasi-periodicity and intermittency) during the drug release process. Among these, a special mode of Kink type, better reflects the empirical data. The fractal study indicated more complex interactions between the angiogenesis inhibitor Bevacizumab and polymeric structure.


Subject(s)
Chitosan , Nanoparticles , Bevacizumab , Chitosan/chemistry , Drug Carriers/chemistry , Drug Delivery Systems/methods , Drug Liberation , Emulsions , Nanoparticles/chemistry , Particle Size , Polymers/chemistry
7.
Polymers (Basel) ; 14(1)2021 Dec 24.
Article in English | MEDLINE | ID: mdl-35012087

ABSTRACT

The purpose of the present paper is to analyze, both experimentally and theoretically, the behavior of the polymeric biocomposite generically known as "liquid wood", trademarked as Arbofill. The experimental part refers to the mechanical performance in tension and compression, having as finality the possibility of using "liquid wood" as a material suitable for the rehabilitation of degraded wooden elements in civil structures (ex. use in historical buildings, monuments etc.). The theoretical part refers to computer simulations regarding the mechanical behavior of "liquid wood" as well as to a theoretical model in the paradigm of motion, which describes the same behavior. This model is based on the hypothesis that "liquid wood" can be assimilated, both structurally and functionally, to a multifractal object, situation in which its entities are described through continuous, non-differentiable curves. Then, descriptions of the behavior of "liquid wood", both in the Schrödinger-type and in hydrodynamic-type representations at various scale resolutions, become operational. Since in the hydrodynamic-type representation, the constitutive law of "liquid wood" can be highlighted, several operational procedures (Ricatti-type gauge, differential geometry in absolute space etc.) will allow correlations between the present proposed model and the experimental data. The obtained results, both practical (81% bearing capacity in compression and 36% bearing capacity in tension, compared to control samples) and theoretical (validation of material performance in virtual environment simulations, stresses and strains correlations in a theoretical model) indicate that "liquid wood" could be used in the construction industry, as a potential rehabilitation material, but with more development clearly needed.

SELECTION OF CITATIONS
SEARCH DETAIL
...