Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biochimie ; 180: 186-204, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33171216

ABSTRACT

Glioblastoma multiforme is the most aggressive type of glioma, with limited treatment and poor prognosis. Despite some advances over the last decade, validation of novel and selective antiglioma agents remains a challenge in clinical pharmacology. Prior studies have shown that leguminous lectins may exert various biological effects, including antitumor properties. Accordingly, this study aimed to evaluate the mechanisms underlying the antiglioma activity of ConBr, a lectin extracted from the Canavalia brasiliensis seeds. ConBr at lower concentrations inhibited C6 glioma cell migration while higher levels promoted cell death dependent upon carbohydrate recognition domain (CRD) structure. ConBr increased p38MAPK and JNK and decreased ERK1/2 and Akt phosphorylation. Moreover, ConBr inhibited mTORC1 phosphorylation associated with accumulation of autophagic markers, such as acidic vacuoles and LC3 cleavage. Inhibition of early steps of autophagy with 3-methyl-adenine (3-MA) partially protected whereas the later autophagy inhibitor Chloroquine (CQ) had no protective effect upon ConBr cytotoxicity. ConBr also augmented caspase-3 activation without affecting mitochondrial function. Noteworthy, the caspase-8 inhibitor IETF-fmk attenuated ConBr induced autophagy and C6 glioma cell death. Finally, ConBr did not show cytotoxicity against primary astrocytes, suggesting a selective antiglioma activity. In summary, our results indicate that ConBr requires functional CRD lectin domain to exert antiglioma activity, and its cytotoxicity is associated with MAPKs and Akt pathways modulation and autophagy- and caspase-8- dependent cell death.


Subject(s)
Antineoplastic Agents/pharmacology , Caspase 8/metabolism , Enzyme Activation/drug effects , Glioma/drug therapy , MAP Kinase Signaling System/drug effects , Plant Lectins/pharmacology , Animals , Apoptosis/drug effects , Astrocytes/drug effects , Autophagy/drug effects , Caspase 3/metabolism , Cell Death/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Survival/drug effects , Glioma/metabolism , Glioma/pathology , Humans , Mice , Mitochondria/drug effects , Mitogen-Activated Protein Kinases/metabolism , Molecular Docking Simulation , Polysaccharides/metabolism , Protein Domains/physiology , Protein Structure, Quaternary/physiology , Protein Structure, Tertiary/physiology , Proto-Oncogene Proteins c-akt/metabolism , Rats
2.
Anticancer Res ; 40(12): 6799-6815, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33288573

ABSTRACT

BACKGROUND/AIM: Glioblastomas (GBMs) are the most malignant primary brain tumor. New treatment strategies against the disease are urgently needed, as therapies are not completely efficient. In this study, we evaluated the antitumorigenic activity of the carotenoid fucoxanthin (Fx) on human GBM cells in vitro. MATERIALS AND METHODS: GBM1 cell viability and proliferation was assessed by MTT reduction, Ki67 and single cell cloning assays. GBM1 migration and invasion were analyzed by wound healing and Transwell assays. Apoptosis and necrosis were analyzed by flow cytometry, and the mitochondrial membrane potential (ΔΨm) by the selective fluorescent dye tetramethylrhodamine ethyl ester. Cell morphology was analyzed through scanning electron microscopy and transmission electron microscopy. Fx anti-angiogenic effect was assessed by the CAM ex ovo assay. RESULTS: Fx decreased cell viability in a concentration-dependent manner (40-100 µ M) in GBM1, A172 and C6 cell lines and was not cytotoxic to murine astrocytes. In addition, Fx inhibited the proliferation and clonogenic potential, and decreased migration and invasion of GBM1 cells. Furthermore, Fx induced apoptosis, loss of ΔΨm and ultrastructural alterations in GBM1. Fx-treated GBM1 cells-conditioned medium reduced the quail yolk membrane vascularity. CONCLUSION: Fx induces cytotoxicity, anti-proliferative, anti-invasive and anti-angiogenic effects on GBM1 cells.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Xanthophylls/pharmacology , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Culture Media, Conditioned/pharmacology , Dose-Response Relationship, Drug , Glioblastoma , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/ultrastructure
3.
Toxicol In Vitro ; 42: 273-280, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28461233

ABSTRACT

Thiol homeostasis has a critical role in the maintenance of proper cellular functions and survival, being coordinated by the action of several reductive enzymes, including glutathione (GSH)/glutathione reductase (GR) and thioredoxin (Trx)/thioredoxin reductase (TrxR) systems. Here, we investigated the effects of the GR inhibitor 2-acetylamino-3-[4-(2-acetylamino-2-carboxyethylsulfanylthiocarbonylamino)phenylthiocarbamoylsulfanyl]propionic acid (2-AAPA) on the activity of thiol reductases (GR and TrxR), redox balance and mitochondrial function of A172 glioblastoma cells. 2-AAPA inhibited cell GR (IC50=6.7µM) and TrxR (IC50=8.7µM). A significant decrease in the cellular ability to decompose cumene hydroperoxide was observed and associated to a greater susceptibility to this peroxide. The redox state of peroxiredoxins (Prx1, Prx2 and Prx3) was markedly shifted to dimer 30min after treatment with 100µM 2-AAPA, an event preceding 2-AAPA-induced decrease in cell viability. Furthermore, mitochondrial function was also severely impaired, leading to a decrease in the respiratory control ratio, reserve capacity, and ATP synthesis-coupled respiration, as well as an increase in mitochondrial membrane potential. Our results indicate that inhibition of GR and TrxR activities, disruption of the ability to detoxify peroxides, increased oxidation of Prxs, as well as compromised mitochondrial function represent early events mediating 2-AAPA toxicity to A172 glioblastoma cells.


Subject(s)
Acetylcysteine/analogs & derivatives , Antineoplastic Agents/pharmacology , Glutathione Reductase/antagonists & inhibitors , Thiocarbamates/pharmacology , Thioredoxin-Disulfide Reductase/antagonists & inhibitors , Acetylcysteine/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glutathione Reductase/metabolism , Humans , Hydrogen Peroxide/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Peroxiredoxins/metabolism , Thioredoxin-Disulfide Reductase/metabolism
4.
Chem Biol Interact ; 252: 74-81, 2016 May 25.
Article in English | MEDLINE | ID: mdl-27012433

ABSTRACT

Glioblastoma multiforme is the main and most frequent tumor in adults' central nervous system. With a survival average of 5% two years after diagnosis, this type of cancer is a main health problem. Substances like the chalcones have been tested in order to develop new treatments. Here, we studied the effects of three synthetic chalcones (A23, C31 and J11) on A172 and surgery obtained-glioma cells. All chalcones showed a decrease in cell viability, mainly C31. An increase in apoptosis levels with no further increase of necrosis was observed. This augmentation may be linked to the high oxidative effect found, caused by the increased presence of reactive oxygen species and nitric oxide production. Cell cycle distribution showed an arrest at G0/G1 and S phases, suggesting that C31 interferes in cell cycle control. Our results shall aid in directing future research with this substance and its antitumor effect.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Brain Neoplasms/drug therapy , Chalcones/pharmacology , Glioblastoma/drug therapy , Antineoplastic Agents/chemistry , Brain/drug effects , Brain/metabolism , Brain/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Chalcones/chemistry , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...