Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Fitoterapia ; 177: 106083, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38897253

ABSTRACT

In an extensive screening endeavor for anti-coronaviral compounds, we examined 824 tropical plant extracts from the Annonaceae and Rutaceae families. The screening identified an ethyl acetate extract from the aerial parts of Miliusa balansae for its potent inhibitory activity against Human coronavirus HCoV-229E. Subsequent bioassay-guided fractionation of this extract revealed two unreported miliusanes including a complex dimeric structure and seven known compounds, comprising miliusane XXXVI, (+)-miliusol, bistyryls, styryl-pyranones, and the flavonoid rhamnetin. The absolute configuration of the new dimeric miliusane was determined by X-ray crystallography and a putative biogenetic origin was proposed. Investigation of the antiviral effect of these nine phytochemicals within HCoV-229E-infected Huh-7 cells showed that (+)-miliusol and miliusane XXXVI exert antiviral activity at non-cytotoxic concentrations, with IC50 values of 1.15 µM and 19.20 µM, respectively. Furthermore, these compounds significantly inhibited SARS-CoV-2 infection in Vero cells, presenting IC50 values of 11.31 µM for (+)-miliusol and 17.92 µM for miliusane XXXVI. Additionally, both compounds exhibited a potent antiviral effect against the emergent mosquito-borne Zika virus, with IC50 values of 1.34 µM and 23.45 µM, respectively. Time-of-addition assays suggest that their mechanism of action might target later stages of the viral cycle, indicating potential modulation of specific cellular pathways. These findings reinforce the invaluable contribution of medicinal flora as reservoirs of natural antiviral agents and emphasize their prospective role in combatting viruses of medical interest.

2.
Mar Drugs ; 22(5)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38786586

ABSTRACT

As a result of screening a panel of marine organisms to identify lead molecules for the stimulation of endochondral bone formation, the calcareous sponge Pericharax heteroraphis was identified to exhibit significant activity during endochondral differentiation. On further molecular networking analysis, dereplication and chemical fractionation yielded the known clathridine A-related metabolites 3-6 and the homodimeric complex (clathridine A)2 Zn2+ (9), together with the new unstable heterodimeric complex (clathridine A-clathridimine)Zn2+ (10). With the presence of the zinc complexes annotated through the LC-MS analysis of the crude extract changing due to the instability of some metabolites and complexes constituting the mixture, we combined the isolation of the predicted molecules with their synthesis in order to confirm their structure and to understand their reactivity. Interestingly, we also found a large quantity of the contaminant benzotriazoles BTZ (7) and its semi-dimer (BTZ)2CH2 (8), which are known to form complexes with transition metals and are used for preventing corrosion in water. All isolated 2-aminoimidazole derivatives and complexes were synthesized not only for structural confirmation and chemical understanding but to further study their bioactivity during endochondral differentiation, particularly the positively screened imidazolone derivatives. Compounds leucettamine B, clathridine A and clathridimine were found to increase type X collagen transcription and stimulate endochondral ossification in the ATDC5 micromass model.


Subject(s)
Cell Differentiation , Osteogenesis , Porifera , Animals , Porifera/chemistry , Osteogenesis/drug effects , Cell Differentiation/drug effects , Aquatic Organisms , Zinc/chemistry
3.
J Comput Aided Mol Des ; 35(7): 853-870, 2021 07.
Article in English | MEDLINE | ID: mdl-34232435

ABSTRACT

We predicted water-octanol partition coefficients for the molecules in the SAMPL7 challenge with explicit solvent classical molecular dynamics (MD) simulations. Water hydration free energies and octanol solvation free energies were calculated with a windowed alchemical free energy approach. Three commonly used force fields (AMBER GAFF, CHARMM CGenFF, OPLS-AA) were tested. Special emphasis was placed on converging all simulations, using a criterion developed for the SAMPL6 challenge. In aggregate, over 1000 [Formula: see text]s of simulations were performed, with some free energy windows remaining not fully converged even after 1 [Formula: see text]s of simulation time. Nevertheless, the amount of sampling produced [Formula: see text] estimates with a precision of 0.1 log units or better for converged simulations. Despite being probably as fully sampled as can expected and is feasible, the agreement with experiment remained modest for all force fields, with no force field performing better than 1.6 in root mean squared error. Overall, our results indicate that a large amount of sampling is necessary to produce precise [Formula: see text] predictions for the SAMPL7 compounds and that high precision does not necessarily lead to high accuracy. Thus, fundamental problems remain to be solved for physics-based [Formula: see text] predictions.


Subject(s)
Octanols/chemistry , Proteins/chemistry , Software , Water/chemistry , Entropy , Ligands , Models, Chemical , Molecular Dynamics Simulation , Solvents/chemistry , Thermodynamics
4.
J Med Chem ; 64(2): 1197-1219, 2021 01 28.
Article in English | MEDLINE | ID: mdl-33417773

ABSTRACT

Significant inhibition of Aurora B was achieved by the synthesis of simplified fragments of benzosceptrins and oroidin belonging to the marine pyrrole-2-aminoimidazoles metabolites isolated from sponges. Evaluation of kinase inhibition enabled the discovery of a synthetically accessible rigid acetylenic structural analogue EL-228 (1), whose structure could be optimized into the potent CJ2-150 (37). Here we present the synthesis of new inhibitors of Aurora B kinase, which is an important target for cancer therapy through mitosis regulation. The biologically oriented synthesis yielded several nanomolar inhibitors. The optimized compound CJ2-150 (37) showed a non-ATP competitive allosteric mode of action in a mixed-type inhibition for Aurora B kinase. Molecular docking identified a probable binding mode in the allosteric site "F" and highlighted the key interactions with the protein. We describe the improvement of the inhibitory potency and specificity of the novel scaffold as well as the characterization of the mechanism of action.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Aurora Kinase B/antagonists & inhibitors , Porifera/chemistry , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Adenosine Triphosphate/metabolism , Allosteric Regulation , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Mitosis/drug effects , Models, Molecular , Molecular Docking Simulation , Structure-Activity Relationship
5.
Eur J Med Chem ; 201: 112337, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32659605

ABSTRACT

With the aim to develop new chemical tools based on simplified natural metabolites to help deciphering the molecular mechanism of necroptosis, simplified benzazole fragments including 2-aminobenzimidazole and the 2-aminobenzothiazole analogs were prepared during the synthesis of the marine benzosceptrin B. Conpounds inhibiting the RIPK1 protein kinase were discovered. A library of 54 synthetic analogs were prepared and evaluated through a phenotypic screen using the inhibition of the necrotic cell death induced by TNF-α in human Jurkat T cells deficient for the FADD protein. This article reports the design, synthesis and biological evaluation of a series of 2-aminobenzazoles on the necroptotic cell death through the inhibition of RIPK1 protein kinase. The 2-aminobenzimidazole and 2-aminobenzothiazole platforms presented herein can serve as novel chemical tools to study the molecular regulation of necroptosis and further develop lead drug candidates for chronic pathologies involving necroptosis.


Subject(s)
Imidazoles/pharmacology , Necroptosis/drug effects , Protein Kinase Inhibitors/pharmacology , Pyrroles/pharmacology , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , Binding Sites , Drug Design , Fas-Associated Death Domain Protein/deficiency , Humans , Imidazoles/chemical synthesis , Imidazoles/metabolism , Jurkat Cells , Molecular Docking Simulation , Molecular Structure , Protein Binding , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/metabolism , Pyrroles/chemical synthesis , Pyrroles/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/chemistry , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Structure-Activity Relationship
6.
J Nat Prod ; 80(12): 3179-3185, 2017 12 22.
Article in English | MEDLINE | ID: mdl-29160716

ABSTRACT

Four new compounds, (+)- and (-)-ecarlottone (1), (±)-fislatifolione (5), (±)-isofislatifolione (6), and (±)-fislatifolic acid (7), and the known desmethoxyyangonin (2), didymocarpin-A (3), and dehydrodidymocarpin-A (4) were isolated from the stem bark of Fissistigma latifolium, by means of bioassay-guided purification using an in vitro affinity displacement assay based on the modulation of Bcl-xL/Bak and Mcl-1/Bid interactions. The structures of the new compounds were elucidated by NMR spectroscopic data analysis, and the absolute configurations of compounds (+)-1 and (-)-1 were assigned by comparison of experimental and computed ECD spectra. (-)-Ecarlottone 1 exhibited a potent antagonistic activity on both protein-protein associations with Ki values of 4.8 µM for Bcl-xL/Bak and 2.4 µM for Mcl-1/Bid.


Subject(s)
Annonaceae/chemistry , Chalcones/chemistry , Chalcones/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Cell Line , Cell Line, Tumor , Crystallography, X-Ray , Human Umbilical Vein Endothelial Cells , Humans , KB Cells
7.
Rapid Commun Mass Spectrom ; 26(22): 2612-8, 2012 Nov 30.
Article in English | MEDLINE | ID: mdl-23059877

ABSTRACT

RATIONALE: Azaphilones, belonging to the class of mitorubrins usually produced in Hypoxylon fragiforme, react easily with amino groups, giving amine derivatives, mitorubramines. These secondary metabolites exhibit a wide range of biological activities. Finding new secondary metabolites from fungi is important, and electrospray ionization (ESI) high-resolution mass spectrometry (HRMS) coupled with sequential MS(n) experiments has become a method of choice for the chemotaxonomic classification of fungi. METHODS: High-performance liquid chromatography of methanol extracts coupled to positive electrospray ionization, high resolving power for accurate mass measurements and resonant excitation for selective ion collision-induced dissociation (CID) have been conducted with the aim of resolving the structures of possible novel compounds. RESULTS: Soft desolvation conditions in the ESI source enabled the detection of intact mitorubramines present in the extract. HRMS provided unambiguous information about the elemental composition of the mitorubramines and their product ions, while sequential MS(3) experiments were essential for the structural discernment of already reported mitorubrins and newly discovered mitorubramines. Indeed, specifically from the latter, a series of consecutive dissociations takes place under CID conditions that are useful for structural elucidation. CONCLUSIONS: A distinctive method for two families of secondary metabolites has been developed. Information observed using HRMS and sequential MS(n) experiments gave unambiguous information about the structure of mitorubramines, especially the position of the nitrogen atom, which was strengthened by proposed unusual fragmentation mechanisms, such as the rearrangement yielding the release of CO(2) from the hydroxyl-diketone structures. These experiments demonstrated that the fragmentations are facilitated by the nitrogen electron lone-pair in mitorubramines, which does not occur in mitorubrins.


Subject(s)
Amines/chemistry , Benzoates/chemistry , Benzopyrans/chemistry , Pigments, Biological/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Xylariales/chemistry , Chromatography, High Pressure Liquid/methods , Gases/chemistry , Ions/chemistry , Methanol/chemistry , Tandem Mass Spectrometry , Xylariales/metabolism
8.
J Comput Chem ; 27(7): 837-56, 2006 May.
Article in English | MEDLINE | ID: mdl-16541427

ABSTRACT

We have developed new force field and parameters for copper(I) and mercury(II) to be used in molecular dynamics simulations of metalloproteins. Parameters have been derived from fitting of ab initio interaction potentials calculated at the MP2 level of theory, and results compared to experimental data when available. Nonbonded parameters for the metals have been calculated from ab initio interaction potentials with TIP3P water. Due to high charge transfer between Cu(I) or Hg(II) and their ligands, the model is restricted to a linear coordination of the metal bonded to two sulfur atoms. The experimentally observed asymmetric distribution of metal ligand bond lengths (r) is accounted for by the addition of an anharmonic (r3) term in the potential. Finally, the new parameters and potential, introduced into the CHARMM force field, are tested in short molecular dynamics simulations of two metal thiolates fragments in water. (Brooks BR et al. J Comput Chem 1983, 4, 1987.1).


Subject(s)
Computer Simulation , Copper/chemistry , Mercury/chemistry , Models, Biological , Proteins/chemistry , Sulfur/chemistry , Databases, Protein , Ions/chemistry , Static Electricity , Water/chemistry
9.
FEBS Lett ; 579(24): 5287-92, 2005 Oct 10.
Article in English | MEDLINE | ID: mdl-16194538

ABSTRACT

Molecular dynamics simulations were performed on both apo and copper forms of the human copper chaperone, Hah1. Wild-type Hah1 and a methionine (M10) to serine mutant were investigated. We have evidenced the central role of residue M10 in stabilizing the hydrophobic core of Hah1 as well as the internal structure of the metal-binding site. When copper(I) is bound, the mobility of Hah1 is reduced whereas mutation of M10 implies a drastic increase of the mobility of apoHah1, stressing the importance of this highly conserved hydrophobic residue for copper sequestration by the apoprotein.


Subject(s)
Cation Transport Proteins/chemistry , Molecular Chaperones/chemistry , Binding Sites , Cation Transport Proteins/metabolism , Copper Transport Proteins , Metallochaperones , Metals/metabolism , Models, Molecular , Molecular Chaperones/metabolism , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation
10.
J Am Chem Soc ; 124(19): 5561-9, 2002 May 15.
Article in English | MEDLINE | ID: mdl-11996599

ABSTRACT

The reaction of ionized formamide H(2)NCHO(*)(+) with water leads to an exclusive loss of CO from the complex. This contrasts with the unimolecular reaction of low-energy ionized formamide, which loses exclusively one hydrogen atom. The unimolecular loss of CO is not observed because it involves several H-transfers corresponding to high-energy barriers. Experimental and theoretical studies of the role of solvation by water on the fragmentation of ionized formamide leads to three different results: (i) In contrast with different systems previously studied, in which solvation plays only a role on one or two steps of a reaction, a molecule of water is efficient in the catalysis of the decarbonylation process because water catalyzes all the steps of the reaction of ionized formamide, including the final dissociation of the amide bond. (ii) The catalyzed isomerization of carbonylic radical cations into their carbene counterparts is shown to be an important step in the process. To study this step, a precise probe, characterizing the carbene structure by ion-molecule reaction, is for the first time described. (iii) Finally, decarbonylation of ionized formamide yields the [NH(3), H(2)O](*)(+) ion, which has not been generated and experimentally studied previously. By this method, the [NH(3), H(2)O](*)(+) ion is generated in abundance and with a low internal energy content, allowing one either to prepare, by ligand exchange, a series of other solvated radical cations or to generate covalent structures such as distonic ions. First results on related systems indicate that the conclusions obtained for ionized formamide are widespread.

SELECTION OF CITATIONS
SEARCH DETAIL
...