Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
J Antimicrob Chemother ; 71(6): 1532-9, 2016 06.
Article in English | MEDLINE | ID: mdl-27076101

ABSTRACT

OBJECTIVES: The objective of this study was to develop standardized protocols for rapid delamanid drug susceptibility testing (DST) using the colorimetric resazurin microtitre assay (REMA) and semi-automated BACTEC™ MGIT™ 960 system (MGIT) by establishing breakpoints that accurately discriminate between susceptibility and resistance of Mycobacterium tuberculosis to delamanid. METHODS: MICs of delamanid were determined by the MGIT, the REMA and the solid agar method for 19 pre-characterized strains. The MIC distribution of delamanid was then established for a panel of clinical strains never exposed to the drug and characterized by different geographical origins and susceptibility patterns. WGS was used to investigate genetic polymorphisms in five genes (ddn, fgd1, fbiA, fbiB and fbiC) involved in intracellular delamanid activation. RESULTS: We demonstrated that the REMA and MGIT can both be used for the rapid and accurate determination of delamanid MIC, showing excellent concordance with the solid agar reference method, as well as high reproducibility and repeatability. We propose the tentative breakpoint of 0.125 mg/L for the REMA and MGIT, allowing reliable discrimination between M. tuberculosis susceptible and resistant to delamanid. Stop codon mutations in ddn (Trp-88 → STOP) and fbiA (Lys-250 → STOP) have only been observed in strains resistant to delamanid. CONCLUSIONS: We established protocols for DST of delamanid in the MGIT and REMA, confirming their feasibility in routine TB diagnostics, utilizing the same discriminative concentration for both methods. Moreover, taking advantage of WGS analysis, we identified polymorphisms potentially associated with resistance in two genes involved in delamanid activation.


Subject(s)
Antitubercular Agents/pharmacology , Colorimetry/methods , Indicators and Reagents/analysis , Microbial Sensitivity Tests/methods , Mycobacterium tuberculosis/drug effects , Nitroimidazoles/pharmacology , Oxazines/analysis , Oxazoles/pharmacology , Xanthenes/analysis , Automation, Laboratory/methods , Genes, Bacterial , Polymorphism, Genetic , Sequence Analysis, DNA
4.
Environ Microbiol ; 18(5): 1591-603, 2016 05.
Article in English | MEDLINE | ID: mdl-26439675

ABSTRACT

Bacteria employ bacteriocins for interference competition in microbial ecosystems. Colicin Ib (ColIb), a pore-forming bacteriocin, confers a significant fitness benefit to Salmonella enterica serovar Typhimurium (S. Tm) in competition against commensal Escherichia coli in the gut. ColIb is released from S. Tm into the environment, where it kills susceptible competitors. However, colicin-specific release proteins, as they are known for other colicins, have not been identified in case of ColIb. Thus, its release mechanism has remained unclear. In the current study, we have established a new link between ColIb release and lysis activity of temperate, lambdoid phages. By the use of phage-cured S. Tm mutant strains, we show that the presence of temperate phages and their lysis genes is necessary and sufficient for release of active ColIb into the culture supernatant. Furthermore, phage-mediated lysis significantly enhanced S. Tm fitness in competition against a ColIb-susceptible competitor. Finally, transduction with the lambdoid phage 933W rescued the defect of E. coli strain MG1655 with respect to ColIb release. In conclusion, ColIb is released from bacteria in the course of phage lysis. Our data reveal a new mechanism for colicin release and point out a novel function of temperate phages in enhancing colicin-dependent bacterial fitness.


Subject(s)
Bacteriophages/physiology , Colicins/metabolism , Genetic Fitness , Salmonella typhimurium/virology , Colicins/genetics , Escherichia coli/genetics , Escherichia coli/virology , Gene Expression Regulation, Bacterial/physiology , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism , Serogroup
5.
PLoS Pathog ; 10(1): e1003844, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24391500

ABSTRACT

The host's immune system plays a key role in modulating growth of pathogens and the intestinal microbiota in the gut. In particular, inflammatory bowel disorders and pathogen infections induce shifts of the resident commensal microbiota which can result in overgrowth of Enterobacteriaceae ("inflammation-inflicted blooms"). Here, we investigated competition of the human pathogenic Salmonella enterica serovar Typhimurium strain SL1344 (S. Tm) and commensal E. coli in inflammation-inflicted blooms. S. Tm produces colicin Ib (ColIb), which is a narrow-spectrum protein toxin active against related Enterobacteriaceae. Production of ColIb conferred a competitive advantage to S. Tm over sensitive E. coli strains in the inflamed gut. In contrast, an avirulent S. Tm mutant strain defective in triggering gut inflammation did not benefit from ColIb. Expression of ColIb (cib) is regulated by iron limitation and the SOS response. CirA, the cognate outer membrane receptor of ColIb on colicin-sensitive E. coli, is induced upon iron limitation. We demonstrate that growth in inflammation-induced blooms favours expression of both S. Tm ColIb and the receptor CirA, thereby fuelling ColIb dependent competition of S. Tm and commensal E. coli in the gut. In conclusion, this study uncovers a so-far unappreciated role of inflammation-inflicted blooms as an environment favouring ColIb-dependent competition of pathogenic and commensal representatives of the Enterobacteriaceae family.


Subject(s)
Colicins/metabolism , Escherichia coli/metabolism , Intestines/microbiology , Salmonella Infections/metabolism , Salmonella typhimurium/metabolism , Animals , Colicins/genetics , Humans , Iron/metabolism , Mice , SOS Response, Genetics/physiology , Salmonella Infections/genetics , Salmonella typhimurium/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...