Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ultrason Sonochem ; 17(1): 228-33, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19501536

ABSTRACT

In this study, the structure and substructure of SiO(2)-Mg phosphate tungsten bronzes, MgPTB, (MgHPW(12)O(40).29H(2)O) obtained by ultrasonic spray pyrolysis method from a silica sol, and a MgPTB solution, obtained by the ion exchange method, as precursors were investigated. The mechanism of the formation of aerosol droplets is discussed. Phase composition, structure and substructure of SiO(2)-MgPTB particles were investigated by X-ray powder diffraction (XRPD) analysis, transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Good agreement between the theoretically predicted values for the mean diameters of particles and subparticles (1.27 microm and 75.4 nm, respectively) and the experimentally obtained ones (1.17 microm and 65-90 nm) was found. This agreement confirms the applicability of the model to get a satisfactory prediction of the most important data related to the nano-structural design of SiO(2)-MgPTB powders.


Subject(s)
Magnesium Compounds/chemistry , Magnesium Compounds/radiation effects , Nanostructures/chemistry , Nanostructures/radiation effects , Phosphates/chemistry , Phosphates/radiation effects , Silicon Dioxide/chemistry , Silicon Dioxide/radiation effects , Tungsten/chemistry , Tungsten/radiation effects , Gases/chemistry , Gases/radiation effects , Hot Temperature , Nanostructures/ultrastructure , Nanotechnology/methods , Particle Size , Radiation Dosage , Sonication/methods
2.
J Microsc ; 232(3): 623-8, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19094050

ABSTRACT

In this study, the synthesis of thin films of Mg phosphorus doped tungsten bronzes (MgPTB; MgHPW(12)O(40).29H(2)O) by the self-assembly of nano-structured particles of MgPTB obtained using the ultrasonic spray pyrolysis method was investigated. As the precursor, MgPTB, prepared by the ionic exchange method, was used. Nano-structured particles of MgPTB were obtained using the ultrasonic spray pyrolysis method. The nano-structure of the particles used as the building blocks in the MgPTB thin film were investigated experimentally and theoretically, applying the model given in this article. The obtained data for the mean particle size and their size distribution show a high degree of agreement. These previously tailored particles used for the preparation of thin films during the next synthesis step, by their self-assembly over slow deposition on a silica glass substrate, show how it is possible to create thin MgPTB films under advance projected conditions of the applied physical fields with a fully determined nanostructure of their building block particles, with a relatively small roughness and unique physical properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...