Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Nanotechnol ; 14(8): 756-761, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31285609

ABSTRACT

When two-dimensional electron gases (2DEGs) are exposed to a magnetic field, they resonantly absorb electromagnetic radiation via electronic transitions between Landau levels1. In 2DEGs with a Dirac spectrum, such as graphene, theory predicts an exceptionally high infrared magneto-absorption, even at zero doping2-5. However, the measured Landau-level magneto-optical effects in graphene have been much weaker than expected2,6-12 because of imperfections in the samples available for such experiments. Here, we measure magneto-transmission and Faraday rotation in high-mobility encapsulated monolayer graphene using a custom-designed set-up for magneto-infrared microspectroscopy. Our results show strongly enhanced magneto-optical activity in the infrared and terahertz ranges, characterized by absorption of light near to the 50% maximum allowed, 100% magnetic circular dichroism and high Faraday rotation. Considering that sizeable effects have been already observed at routinely achievable magnetic fields, our findings demonstrate the potential of magnetic tuning in 2D Dirac materials for long-wavelength optoelectronics and plasmonics.

2.
Phys Rev Lett ; 117(1): 017402, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-27419590

ABSTRACT

We measure the far-infrared reflectivity and Kerr angle spectra on a high-quality crystal of pure semimetallic bismuth as a function of magnetic field, from which we extract the conductivity for left- and right-handed circular polarizations. The high spectral resolution allows us to separate the intraband Landau level transitions for electrons and holes. The hole transition exhibits 100% magnetic circular dichroism; it appears only for one polarization as expected for a circular cyclotron orbit. However, the dichroism for electron transitions is reduced to only 13±1%, which is quantitatively explained by the large effective mass anisotropy of the electron pockets of the Fermi surface. This observation is a signature of the mismatch between the metric experienced by the photons and the electrons. It allows for a contactless measurement of the effective mass anisotropy and provides a direction towards valley polarized magnetooptical pumping with elliptically polarized light.

3.
Rev Sci Instrum ; 86(3): 033906, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25832244

ABSTRACT

We describe a simple magneto-optical experiment and introduce a magneto-optical Kramers-Kronig analysis (MOKKA) that together allow extracting the complex dielectric function for left- and right-handed circular polarizations in a broad range of frequencies without actually generating circularly polarized light. The experiment consists of measuring reflectivity and Kerr rotation, or alternatively transmission and Faraday rotation, at normal incidence using only standard broadband polarizers without retarders or quarter-wave plates. In a common case, where the magneto-optical rotation is small (below ∼0.2 rad), a fast measurement protocol can be realized, where the polarizers are fixed at 45(∘) with respect to each other. Apart from the time-effectiveness, the advantage of this protocol is that it can be implemented at ultra-high magnetic fields and in other situations, where an in-situ polarizer rotation is difficult. Overall, the proposed technique can be regarded as a magneto-optical generalization of the conventional Kramers-Kronig analysis of reflectivity on bulk samples and the Kramers-Kronig constrained variational analysis of more complex types of spectral data. We demonstrate the application of this method to the textbook semimetals bismuth and graphite and also use it to obtain handedness-resolved magneto-absorption spectra of graphene on SiC.

4.
Opt Express ; 21(21): 24736-41, 2013 Oct 21.
Article in English | MEDLINE | ID: mdl-24150317

ABSTRACT

We demonstrate that giant Faraday rotation in graphene in the terahertz range due to the cyclotron resonance is further increased by constructive Fabry-Perot interference in the supporting substrate. Simultaneously, an enhanced total transmission is achieved, making this effect doubly advantageous for graphene-based magneto-optical applications. As an example, we present far-infrared spectra of epitaxial multilayer graphene grown on the C-face of 6H-SiC, where the interference fringes are spectrally resolved and a Faraday rotation up to 0.15 radians (9°) is attained. Further, we discuss and compare other ways to increase the Faraday rotation using the principle of an optical cavity.

SELECTION OF CITATIONS
SEARCH DETAIL
...