Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Opt Soc Am A Opt Image Sci Vis ; 26(5): 1101-8, 2009 May.
Article in English | MEDLINE | ID: mdl-19412226

ABSTRACT

The depolarization property of a biomedium with anisotropic biomolecule optical scattering is investigated theoretically. By using a simple ellipsoid model of a single biomolecule, the scattering fields and Mueller matrices are derived from fundamental electromagnetism theory. The biomedium is modeled as a system of uncorrelated anisotropic molecules. On the basis of a statistical model of anisotropic molecular distribution, the scattering depolarization of the biomedium is investigated. Simulated results of the molecular shape and orientation dependent single scattering depolarization D(1) and the double scattering depolarization D(2) are reported. The D(2) contribution is found to be more important for higher-density scattering media. The depolarizations of the forward single and double scattering of a model cell membrane are simulated and discussed. The fitting to a single tetra-methylrhodamine-labeled lipid molecule's anisotropic imaging experiment has demonstrated that large depolarization arises for the membrane to which the fluorescence emitting molecule is attached. This theory can provide a simulation analysis tool for investigating the scattering polarization/depolarization effect and the photon density wave transport property of a highly scattering biomedium.


Subject(s)
Light , Scattering, Radiation , Anisotropy , Cell Membrane
2.
J Opt Soc Am A Opt Image Sci Vis ; 25(5): 1030-8, 2008 May.
Article in English | MEDLINE | ID: mdl-18451909

ABSTRACT

The full polarization properties of anisotropic biomolecule optical scattering are investigated theoretically. By using a simple ellipsoid model of a single biomolecule, the scattering fields and Mueller matrices are derived from fundamental electromagnetism theory. The energy of scattered photons is not necessarily equal to that of the incident laser beam. This theory can be generally applied to the experiments of fluorescence, Raman scattering, and second-harmonic generation. Fitting of a single tetramethylrhodamine-labeled lipid molecule's anisotropic imaging experiment is demonstrated. This theory has provided a fundamental simulation analysis tool of understanding and developing the optical polarimetric sensing science and technology of the anisotropic biomolecules and biomedium. The medium dielectric constant of the model ellipsoid provides a theoretic background for correlating the optical polarization properties of a biomolecule to its microscopic electronic structure.


Subject(s)
Biopolymers/chemistry , Fluorescence Polarization/methods , Image Interpretation, Computer-Assisted/methods , Models, Chemical , Refractometry/methods , Spectrum Analysis, Raman/methods , Anisotropy , Computer Simulation , Light , Scattering, Radiation
3.
J Opt Soc Am A Opt Image Sci Vis ; 23(10): 2510-8, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16985536

ABSTRACT

The full polarization property of holographic volume-grating enhanced second-harmonic diffraction (SHD) is investigated theoretically. The nonlinear coefficient is derived from a simple atomic model of the material. By using a simple volume-grating model, the SHD fields and Mueller matrices are first derived. The SHD phase-mismatching effect for a thick sample is analytically investigated. This theory is justified by fitting with published experimental SHD data of thin-film samples. The SHD of an existing polymethyl methacrylate (PMMA) holographic 2-mm-thick volume-grating sample is investigated. This sample has two strong coupling linear diffraction peaks and five SHD peaks. The splitting of SHD peaks is due to the phase-mismatching effect. The detector sensitivity and laser power needed to measure these peak signals are quantitatively estimated.

4.
J Opt Soc Am A Opt Image Sci Vis ; 21(9): 1635-44, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15384429

ABSTRACT

A Mueller matrix for scattering by a rough plane surface of a glass hemisphere was simulated by using a micro-facet model. The algorithms are formulated in vector representation in terms of the input and output directions. The single-facet scattering simulation used the results of the Kirchhoff integral for medium rough surfaces with exponential height distribution. Scatterings by two or more facets were also simulated. For a fixed angle between the incident and the detection directions, the transmission scattering and its polarization properties were symmetric when plotted against the off-specular incident angle. The single-facet model generated no depolarization or polarization change. When double-facet scattering was included, polarizations were changed appreciably while depolarization was still very small. Depolarization increased appreciably when scattering by higher orders was included. The simulated results that include all orders of scattering fit excellently to the measured scattering transmittance and its polarization and depolarization.

5.
J Opt Soc Am A Opt Image Sci Vis ; 21(4): 523-31, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15078023

ABSTRACT

The full polarization property of volume holographic grating diffraction is investigated theoretically. With a simple volume grating model, the diffracted fields and Mueller matrices are first derived from Maxwell's equations by using the Green's function algorithms. The formalism is derived for the general case that the diffraction beam and the grating wave vector are not in the plane of incidence, where s waves and p waves are not decoupled. The derived photon-momentum relations determine the Bragg angle selectivity. The parameters of diffraction strength related to the hologram-writing process and material are defined and are not necessarily small in general. The diffracted-beam profiles are analytically calculated by using the known grating shape function. This theory has provided a fundamental understanding of the polarization phenomena of a real holographic diffraction grating device. The derived algorithm would provide a simulation-analysis tool for the engineering design of real holographic beam combiner/splitter devices.

6.
J Opt Soc Am A Opt Image Sci Vis ; 21(4): 532-9, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15078024

ABSTRACT

The transmittance, ellipsometric parameters, and depolarization of transmission, diffraction, and reflection of two volume holographic gratings (VHGs) are measured at a wavelength of 632.8 nm. The measured data are in good agreement with the theoretical simulated results, which demonstrated the correlation between the diffraction strength and the polarization properties of a VHG. Vector electromagnetic theory and polarization characterization are necessary for complete interpretation of the diffraction property of a VHG. The diffraction efficiency is measured at 532 nm in a polarization-sensing experiment. The measured data and theoretical simulation have demonstrated the potential application of the holographic beam splitter for polarization-sensor technology.

7.
Opt Lett ; 29(3): 298-300, 2004 Feb 01.
Article in English | MEDLINE | ID: mdl-14759057

ABSTRACT

We propose an ultrafast holographic Stokesmeter using a volume holographic substrate with two sets of two orthogonal gratings to identify all four Stokes parameters of the input beam. We derive the Mueller matrix of the proposed architecture and determine the constraints necessary for reconstructing the complete Stokes vector. The speed of this device is determined primarily by the channel spectral bandwidth (typically 100 GHz), corresponding to a few picoseconds.

SELECTION OF CITATIONS
SEARCH DETAIL
...