Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 26(25): 17456-17466, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38888144

ABSTRACT

While model studies with small nanoparticles offer a bridge between applied experiments and theoretical calculations, the intricacies of working with well-defined nanoparticles in electrochemistry pose challenges for experimental researchers. This perspective dives into nanoparticle electrochemistry, provides experimental insights to uncover their intrinsic catalytic activity and draws conclusions about the effects of altering their size, composition, or loading. Our goal is to help uncover unexpected contamination sources and establish a robust experimental methodology, which eliminates external parameters that can overshadow the intrinsic activity of the nanoparticles. Additionally, we explore the experimental difficulties that can be encountered, such as stability issues, and offer strategies to mitigate their impact. From support preparation to electrocatalytic tests, we guide the reader through the entire process, shedding light on potential challenges and crucial experimental details when working with these complex systems.

2.
ACS Energy Lett ; 8(10): 4414-4420, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37854044

ABSTRACT

Many electrosynthesis reactions, such as CO2 reduction to multicarbon products, involve the formation of dipolar and polarizable transition states during the rate-determining step. Systematic and independent control over surface reactivity and electric field strength would accelerate the discovery of highly active electrocatalysts for these reactions by providing a means of reducing the transition state energy through field stabilization. Herein, we demonstrate that intermetallic alloying enables independent and systematic control over d-band energetics and work function through the variation of alloy composition and oxophilic constituent identity, respectively. We identify several intermetallic phases exhibiting properties that should collectively yield higher intrinsic activity for CO reduction compared to conventional Cu-based electrocatalysts. However, we also highlight the propensity of these alloys to segregate in air as a significant roadblock to investigating their electrocatalytic activity.

3.
Opt Lett ; 44(17): 4383-4386, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31465408

ABSTRACT

We report on the progress towards developing a new method for fabricating more efficient, broadband antireflective (AR) moth-eye structures in As2Se3 via a direct nanoimprinting technique. Thermal reflow is used during mold fabrication to reshape a conventional deep-ultraviolet lithography in order to promote a pattern transfer of "secant ogive"-like moth-eye structures. Once replicated, structures modified by reflow displayed greater AR efficiency compared to structures replicated by a conventional mold, achieving the highest spectrum-averaged transmittance improvement of 12.36% from 3.3 to 12 µm.

SELECTION OF CITATIONS
SEARCH DETAIL
...