Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Physiol Rep ; 12(3): e15936, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38307711

ABSTRACT

The purpose of this study was to gain insight into histamine's role in the exercise inflammatory response and recovery from exercise. To explore this, young healthy participants (n = 12) performed 300 eccentric leg extensions under control (Placebo) versus histamine H1 and H2 receptor antagonism (Blockade) in a randomized cross-over study. Circulating leukocytes and cytokines were measured for 72 h after exercise. Circulating leukocytes were elevated at 6 and 12 h after exercise (p < 0.05) with the peak response being a 44.1 ± 11.7% increase with Blockade versus 13.7 ± 6.6% with Placebo (both p < 0.05 vs. baseline, but also p < 0.05 between Blockade and Placebo). Of the cytokines that were measured, only MCP-1 was elevated following exercise. The response at 6 h post-exercise was a 104.0 ± 72.5% increase with Blockade versus 93.1 ± 41.9% with Placebo (both p < 0.05 vs. baseline, p = 0.82 between Blockade and Placebo). The main findings of the present investigation were that taking combined histamine H1 and H2 receptor antagonists augmented the magnitude but not the duration of the increase of circulating immune cells following exercise. This suggests histamine is not only exerting a local influence within the skeletal muscle but that it may influence the systemic inflammatory patterns.


Subject(s)
Cytokines , Histamine , Humans , Pilot Projects , Exercise/physiology , Histamine H2 Antagonists/pharmacology
2.
J Appl Physiol (1985) ; 136(3): 492-508, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38205553

ABSTRACT

Insufficient hydration is prevalent among free living adults. This study investigated whether hypohydration alters 1) renal functional reserve, 2) the renal hemodynamic response to the exercise pressor reflex, and 3) urine-concentrating ability during oral protein loading. In a block-randomized crossover design, 22 healthy young adults (11 females and 11 males) underwent 24-h fluid deprivation (Hypohydrated) or 24-h normal fluid consumption (Euhydrated). Renal functional reserve was assessed by oral protein loading. Renal hemodynamics during the exercise pressor reflex were assessed via Doppler ultrasound. Urine-concentrating ability was assessed via free water clearance. Creatinine clearance did not differ at 150 min postprotein consumption between conditions [Hypohydrated: 246 mL/min, 95% confidence interval (CI): 212-280; Euhydrated: 231 mL/min, 95% CI: 196-265, P = 0.2691] despite an elevated baseline in Hypohydrated (261 mL/min, 95% CI: 218-303 vs. 143 mL/min, 95% CI: 118-168, P < 0.0001). Renal artery vascular resistance was not different at baseline (P = 0.9290), but increases were attenuated in Hypohydrated versus Euhydrated at the end of handgrip (0.5 mmHg/cm/s, 95% CI: 0.4-0.7 vs. 0.8 mmHg/cm/s 95% CI: 0.6-1.1, P = 0.0203) and end occlusion (0.2 mmHg/cm/s, 95% CI: 0.1-0.3 vs. 0.4 mmHg/cm/s 95% CI: 0.3-0.6, P = 0.0127). There were no differences between conditions in free water clearance at 150 min postprotein (P = 0.3489). These data indicate that hypohydration 1) engages renal functional reserve and attenuates the ability to further increase creatinine clearance, 2) attenuates increases in renal artery vascular resistance to the exercise pressor reflex, and 3) does not further enhance nor impair urine-concentrating ability during oral protein loading.NEW & NOTEWORTHY Insufficient hydration is prevalent among free living adults. This study found that hypohydration induced by 24-h fluid deprivation engaged renal functional reserve and that oral protein loading did not further increase creatinine clearance. Hypohydration also attenuated the ability to increase renal vascular resistance during the exercise pressor reflex. In addition, hypohydration neither enhanced nor impaired urine-concentrating ability during oral protein loading. These data support the importance of mitigating hypohydration in free living adults.


Subject(s)
Hand Strength , Reflex , Female , Male , Young Adult , Humans , Creatinine , Hemodynamics , Water
3.
J Therm Biol ; 118: 103727, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37866096

ABSTRACT

Cold water immersion (CWI) may provide benefits for physical and mental health. Our purpose was to investigate the effects of an acute bout of CWI on vascular shear stress and affect (positive and negative). Sixteen healthy adults (age: 23 ± 4 y; (9 self-reported men and 7 self-reported women) completed one 15-min bout of CWI (10 °C). Self-reported affect (positive and negative) was assessed at pre-CWI (Pre), 30-min post-immersion, and 180-min post-immersion in all participants. Brachial artery diameter and blood velocity were measured (Doppler ultrasound) at Pre, after 1-min and 15-min of CWI, and 30-min post-immersion (n = 8). Total, antegrade, and retrograde shear stress, oscillatory shear index (OSI), and forearm vascular conductance (FVC) were calculated. Venous blood samples were collected at Pre, after 1-min and 15-min of CWI, 30-min post-immersion, and 180-min post-immersion (n = 8) to quantify serum ß-endorphins and cortisol. Data were analyzed using a one-way ANOVA with Fisher's least significance difference and compared to Pre. Positive affect did not change (ANOVA p = 0.450) but negative affect was lower at 180-min post-immersion (p < 0.001). FVC was reduced at 15-min of CWI and 30-min post-immersion (p < 0.020). Total and antegrade shear and OSI were reduced at 30-min post-immersion (p < 0.040) but there were no differences in retrograde shear (ANOVA p = 0.134). ß-endorphins did not change throughout the trial (ANOVA p = 0.321). Cortisol was lower at 180-min post-immersion (p = 0.014). An acute bout of CWI minimally affects shear stress patterns but may benefit mental health by reducing negative feelings and cortisol levels.


Subject(s)
Cold Temperature , Endorphins , Adult , Female , Humans , Male , Young Adult , Affect , Hydrocortisone , Immersion , Water
4.
Am J Physiol Renal Physiol ; 325(2): F199-F213, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37318992

ABSTRACT

The high prevalence of inadequate hydration (e.g., hypohydration and underhydration) is concerning given that extreme heat increases excess hospitalizations for fluid/electrolyte disorders and acute kidney injury (AKI). Inadequate hydration may also be related to renal and cardiometabolic disease development. This study tested the hypothesis that prolonged mild hypohydration increases the urinary AKI biomarker product of insulin-like growth factor-binding protein 7 and tissue inhibitor of metalloproteinase-2 ([IGFBP7·TIMP-2]) compared with euhydration. In addition, we determined the diagnostic accuracy and optimal cutoffs of hydration assessments for discriminating positive AKI risk ([IGFBP·TIMP-2] >0.3 (ng/mL)2/1,000). In a block-randomized crossover design, 22 healthy young adults (11 females and 11 males) completed 24 h of fluid deprivation (hypohydrated group) or 24 h of normal fluid consumption (euhydrated group) separated by ≥72 h. Urinary [IGFBP7·TIMP-2] and other AKI biomarkers were measured following the 24-h protocols. Diagnostic accuracy was assessed via receiver operating characteristic curve analysis. Urinary [IGFBP7·TIMP-2] [1.9 (95% confidence interval: 1.0-2.8) vs. 0.2 (95% confidence interval: 0.1-0.3) (ng/mL)2/1,000, P = 0.0011] was markedly increased in hypohydrated versus euhydrated groups. Urine osmolality (area under the curve: 0.91, P < 0.0001) and urine specific gravity (area under the curve: 0.89, P < 0.0001) had the highest overall performance for discriminating positive AKI risk. Optimal cutoffs with a positive likelihood ratio of 11.8 for both urine osmolality and specific gravity were 952 mosmol/kgH2O and 1.025 arbitrary units. In conclusion, prolonged mild hypohydration increased urinary [IGFBP7·TIMP-2] in males and females. Urinary [IGFBP7·TIMP-2] corrected to urine concentration was elevated in males only. Urine osmolality and urine specific gravity may have clinical utility for discriminating positive AKI risk following prolonged mild hypohydration.NEW & NOTEWORTHY This study found that prolonged mild hypohydration in healthy young adults increased the Food and Drug Administration approved acute kidney injury (AKI) biomarker urinary insulin-like growth factor-binding protein 7 and tissue inhibitor of metalloproteinase-2 [IGFBP7·TIMP-2]. Urine osmolality and specific gravity demonstrated an excellent ability to discriminate positive AKI risk. These findings emphasize the importance of hydration in protecting renal health and lend early support for hydration assessment as an accessible tool to assess AKI risk.


Subject(s)
Acute Kidney Injury , Somatomedins , Male , Female , Humans , Young Adult , Tissue Inhibitor of Metalloproteinase-2 , Biomarkers , Acute Kidney Injury/diagnosis , Kidney , Insulin-Like Growth Factor Binding Proteins
5.
Front Physiol ; 14: 1142567, 2023.
Article in English | MEDLINE | ID: mdl-36960159

ABSTRACT

Introduction: Oral bicarbonate loading improves the buffering of metabolic acidosis and may improve exercise performance but can also result in gastric distress. Momentous' PR Lotion contains a novel composition intended to provide a transdermal delivery vehicle for sodium bicarbonate which could allow the same ergogenic effect without the gastric distress. The present study explored the effect of transdermal delivery of sodium bicarbonate in a resting condition. Methods: We measured the pH from intramuscular dialysate, via microdialysis, of the vastus lateralis during a 2 h application of PR Lotion (40 g of lotion per leg) in 9 subjects (3 women, 6 men). Venous blood samples were obtained for serum pH before and after application. A placebo time control was also performed in 4 subjects (2 women, 2 men). We hypothesized that PR Lotion application would increase pH of intramuscular dialysate. Results: PR Lotion resulted in a rise in pH of 0.13 ± 0.04 units (p < 0.05), which translates to a 28% reduction in [H+]. Increases in serum pH were smaller (∼9%) yet consistent (p < 0.05). In contrast, placebo time control pH tended to decrease (p = 0.08). The effect of PR Lotion on pH tended to correlate with the dose per kg body weight of each individual (r = 0.70, p = 0.08). Conclusion: These observations support the idea of transdermal bicarbonate delivery impacting pH buffering both systemically and intramuscularly. Further work investigating these potential benefits in an exercising model would be critical to establishing PR Lotion's utility as an ergogenic aid.

6.
Zootaxa ; 5154(3): 305-318, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-36095620

ABSTRACT

Vespa crabro Linnaeus is newly reported as an adventive species in British Columbia, Canada which is the first record of this invasive species in western North America. The specimen of V. crabro was identified using morphological diagnostic keys and by comparison to authoritatively identified specimens. DNA barcoding provided support that the British Columbia specimen is conspecific with sequenced specimens of V. crabro. It is not possible to be certain of the origin of the specimen, but the DNA barcode was identical to sequence from specimens of V. crabro from South Korea. DNA barcoding was also performed on morphologically identified specimens of Vespa simillima and Vespa soror collected previously in British Columbia and the sequences were closest to V. simillima and V. soror Genbank sequences, respectively. There is no evidence that any of these species have established populations in the province. We provide diagnostic morphological characters to distinguish Canadian Vespa species from each other including Vespa mandarinia which has recently established populations in British Columbia and Washington State, USA. The potential detrimental impacts of each species are discussed.


Subject(s)
Wasps , Animals , Bees , Introduced Species , North America , Wasps/anatomy & histology , Wasps/genetics
7.
Eur Respir J ; 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35169025

ABSTRACT

Although asthma is very common affecting 5-10% of the population, the diagnosis of asthma in adults remains a challenge in the real world that results in both over- and under-diagnosis. A task force (TF) was set up by the European Respiratory Society to systematically review the literature on the diagnostic accuracy of tests used to diagnose asthma in adult patients and provide recommendation for clinical practice.The TF defined eight PICO (Population, Index, Comparator, and Outcome) questions that were assessed using the GRADE (Grading of Recommendations, Assessment, Development and Evaluation) approach, The TF utilised the outcomes to develop an evidenced-based diagnostic algorithm, with recommendations for a pragmatic guideline for everyday practice that was directed by real-life patient experiences.The TF support the initial use of spirometry followed, and if airway obstruction is present, by bronchodilator reversibility testing. If initial spirometry fails to show obstruction, further tests should be performed in the following order: FeNO, PEF variability or in secondary care, bronchial challenge. We present the thresholds for each test that are compatible with a diagnosis of asthma in the presence of current symptoms.The TF reinforce the priority to undertake spirometry and recognise the value of measuring blood eosinophils and serum IgE to phenotype the patient. Measuring gas trapping by body plethysmography in patients with preserved FEV1/FVC ratio deserves further attention. The TF draw attention on the difficulty of making a correct diagnosis in patients already receiving inhaled corticosteroids, the comorbidities that may obscure the diagnosis, the importance of phenotyping, and the necessity to consider the patient experience in the diagnostic process.

8.
J Appl Physiol (1985) ; 132(2): 367-374, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34941436

ABSTRACT

Aerobic exercise induces mast cell degranulation and increases histamine formation by histidine decarboxylase, resulting in an ∼150% increase in intramuscular histamine. The purpose of this study was to determine if the increase in skeletal muscle temperature associated with exercise is sufficient to explain this histamine response. Specifically, we hypothesized that local passive heating that mimics the magnitude and time course of changes in skeletal muscle temperature observed during exercise would result in increased intramuscular histamine concentrations comparable to exercising values. Seven subjects participated in the main study in which pulsed short-wave diathermy was used to passively raise the temperature of the vastus lateralis over 60 min. Heating increased intramuscular temperature from 32.6°C [95% confidence interval (CI) 32.0°C to 33.2°C] to 38.9°C (38.7°C to 39.2°C) (P < 0.05) and increased intramuscular histamine concentration from 2.14 ng/mL (1.92 to 2.36 ng/mL) to 2.97 ng/mL (2.57 to 3.36 ng/mL) (P < 0.05), an increase of 41%. In a follow-up in vitro experiment using human-derived cultured mast cells, heating to comparable temperatures did not activate mast cell degranulation. Therefore, it appears that exercise-associated changes in skeletal muscle temperature are sufficient to generate elevations in intramuscular histamine concentration. However, this thermal effect is most likely due to changes in de novo histamine formation via histidine decarboxylase and not due to degranulation of mast cells. In conclusion, physiologically relevant increases in skeletal muscle temperature explain part, but not all, of the histamine response to aerobic exercise. This thermal effect may be important in generating positive adaptations to exercise training.NEW & NOTEWORTHY The "exercise signal" that triggers histamine release within active skeletal muscle during aerobic exercise is unknown. By mimicking the magnitude and time course of increasing skeletal muscle temperature observed during aerobic exercise, we demonstrate that part of the exercise-induced rise in histamine is explained by a thermal effect, with in vitro experiments suggesting this is most likely via de novo histamine formation. This thermal effect may be important in generating positive adaptations to exercise training.


Subject(s)
Histamine , Hyperthermia, Induced , Heating , Histamine Release , Humans , Muscle, Skeletal
9.
Temperature (Austin) ; 6(2): 169-178, 2019.
Article in English | MEDLINE | ID: mdl-31286027

ABSTRACT

Rationale: Passive heat therapy improves vascular endothelial function, likely via enhanced nitric oxide (NO) bioavailability, although the mechanistic stimuli driving these changes are unknown. Objective: To determine the isolated effects of circulating (serum) factors on endothelial cell function, particularly angiogenesis, and NO bioavailability. Methods and Results: Cultured human umbilical vein endothelial cells (HUVECs) were exposed to serum collected from 20 healthy young (22 ± 1 years) adults before (0 wk), after one session of water immersion (Acute HT), and after 8 wk of either heat therapy (N = 10; 36 sessions of hot water immersion; session 1 peak rectal temperature: 39.0 ± 0.03°C) or sham (N = 10; 36 sessions of thermoneutral water immersion). Serum collected following acute heat exposure and heat therapy improved endothelial cell angiogenesis (Matrigel bioassay total tubule length per frame, 0 wk: 69.3 ± 1.9 mm vs. Acute HT: 72.8 ± 1.4 mm, p = 0.04; vs. 8 wk: 73.0 ± 1.4 mm, p = 0.03), with no effects of sham serum. Enhanced angiogenesis was NO-mediated, as addition of the NO synthase (NOS) inhibitor L-NNA to the culture media abolished differences in tubule formation across conditions (0 wk: 71.3 ± 1.8 mm, Acute HT: 71.6 ± 1.9 mm, 8 wk: 70.5 ± 1.6 mm, p = 0.69). In separate experiments, we found that abundance of endothelial NOS (eNOS) was unaffected by Acute HT serum (p = 0.71), but increased by 8 wk heat therapy serum (1.4 ± 0.1-fold from 0 wk, p < 0.01). Furthermore, increases in eNOS were related to improvements in endothelial tubule formation (r2 = 0.61, p < 0.01). Conclusions: Passive heat therapy beneficially alters circulating factors that promote NO-mediated angiogenesis in endothelial cells and increase eNOS abundance. These changes may contribute to improvements in vascular function with heat therapy observed in vivo. Abbreviations: Ang-1: angiopoietin-1; ANOVA: analysis of variance; bFGF: basic fibroblast growth factor; CV: cardiovascular; CVD: cardiovascular diseases; eNOS: endothelial nitric oxide synthase; HSPs: heat shock proteins; HT: heat therapy; HUVECs: human umbilical endothelial cells; L-NNA: Nω-nitro-L-arginine; MnSOD: manganese superoxide dismutase; NO: nitric oxide; NOS: nitric oxide synthase; PBMCs: peripheral blood mononuclear cells; RM: repeated measures; sFlt-1: soluble VEGF receptor; SOD: superoxide dismutase; TGF-ß: transforming growth factor- ß; VEGF: vascular endothelial growth factor.

10.
Am J Physiol Endocrinol Metab ; 317(1): E172-E182, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31136202

ABSTRACT

Polycystic ovary syndrome (PCOS) is associated with high rates of obesity and metabolic dysfunction. Repeated passive heat exposure (termed heat therapy) is a novel lifestyle intervention for improving health in obese women with PCOS. The purpose of this study was to examine changes in metabolic function in obese women with PCOS following heat therapy. Eighteen age- and BMI-matched obese women with PCOS (age: 27 ± 1 yr, BMI: 41.3 ± 1.1 kg/m-2) were assigned to heat therapy (HT) or time control (CON). HT participants underwent 30 one-hour hot tub sessions over 8-10 wk, while CON participants completed all testing but did not undergo heat therapy. Before (Pre), at the mid-point (Mid), and following (Post) 8-10 wk of heat therapy, metabolic health was assessed using a 2-h oral glucose tolerance test, a subcutaneous abdominal fat biopsy (Pre-Post only), and other blood markers relating to metabolic function. HT participants exhibited improved fasting glucose (Pre: 105 ± 3, Post: 89 ± 5mg/dl; P = 0.001), glucose area under the curve (AUC) (Pre: 18,698 ± 1,045, Post: 16,987 ± 1,017 mg·dl-1·min-1; P = 0.028) and insulin AUC (Pre: 126,924 ± 11,730, Post: 91,233 ± 14,429 IU l-1·min-1; P = 0.012). Adipocyte insulin signaling (p-AKT at Ser-473 with 1.2 nM insulin) increased in HT (Pre: 0.29 ± 0.14, Post: 0.93 ± 0.29 AU; P = 0.021). Additionally, serum testosterone declined in HT participants (Pre: 51 ± 7, Post: 34 ± 4 ng/dl; P = 0.033). No parameters changed over time in CON, and no change in BMI was observed in either group. HT substantially improved metabolic risk profile in obese women with PCOS. HT also reduced androgen excess and may improve PCOS symptomology.


Subject(s)
Adipose Tissue/metabolism , Blood Glucose/metabolism , Hot Temperature/therapeutic use , Insulin Resistance/physiology , Insulin/metabolism , Polycystic Ovary Syndrome/therapy , Adult , Body Mass Index , Female , Glucose Tolerance Test , Humans , Immersion , Middle Aged , Obesity/complications , Obesity/metabolism , Obesity/therapy , Polycystic Ovary Syndrome/complications , Polycystic Ovary Syndrome/metabolism
11.
J Physiol ; 596(20): 4831-4845, 2018 10.
Article in English | MEDLINE | ID: mdl-30118148

ABSTRACT

KEY POINTS: Accumulating evidence indicates that passive heat therapy (chronic use of hot tubs or saunas) has widespread physiological benefits, including enhanced resistance against novel stressors ('stress resistance'). Using a cell culture model to isolate the key stimuli that are likely to underlie physiological adaptation with heat therapy, we showed that both mild elevations in temperature (to 39°C) and exposure to serum from human subjects who have undergone 8 weeks of heat therapy (i.e. altered circulating factors) independently prevented oxidative and inflammatory stress associated with hypoxia-reoxygenation in cultured endothelial cells. Our results elucidate some of the mechanisms (i.e. direct effects of temperature vs. circulating factors) by which heat therapy seems to improve resistance against oxidative and inflammatory stress. Heat therapy may be a promising intervention for reducing cellular damage following ischaemic events, which has broad implications for patients with cardiovascular diseases and conditions characterized by 'chronic' ischaemia (e.g. peripheral artery disease, metabolic diseases, obesity). ABSTRACT: Repeated exposure to passive heat stress ('heat therapy') has widespread physiological benefits, including cellular protection against novel stressors. Increased heat shock protein (HSP) expression and upregulation of circulating factors may impart this protection. We tested the isolated abilities of mild heat pretreatment and serum from human subjects (n = 10) who had undergone 8 weeks of heat therapy to protect against cellular stress following hypoxia-reoxygenation (H/R), a model of ischaemic cardiovascular events. Cultured human umbilical vein endothelial cells were incubated for 24 h at 37°C (control), 39°C (heat pretreatment) or 37°C with 10% serum collected before and after 8 weeks of passive heat therapy (four to five times per week to increase rectal temperature to ≥ 38.5°C for 60 min). Cells were then collected before and after incubation at 1% O2 for 16 h (hypoxia; 37°C), followed by 20% O2 for 4 h (reoxygenation; 37°C) and assessed for markers of cell stress. In control cells, H/R increased nuclear NF-κB p65 protein (i.e. activation) by 106 ± 38%, increased IL-6 release by 37 ± 8% and increased superoxide production by 272 ± 45%. Both heat pretreatment and exposure to heat therapy serum prevented H/R-induced NF-κB activation and attenuated superoxide production; by contrast, only exposure to serum attenuated IL-6 release. H/R also decreased cytoplasmic haemeoxygenase-1 (HO-1) protein (known to suppress NF-κB), in control cells (-25 ± 8%), whereas HO-1 protein increased following H/R in cells pretreated with heat or serum-exposed, providing a possible mechanism of protection against H/R. These data indicate heat therapy is capable of imparting resistance against inflammatory and oxidative stress via direct heat and humoral factors.


Subject(s)
Hyperthermia, Induced/methods , Myocardial Ischemia/prevention & control , Blood Pressure , Cells, Cultured , Female , Heart Rate , Heme Oxygenase-1/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/physiology , Humans , Interleukin-6/metabolism , Male , Transcription Factor RelA/metabolism , Young Adult
12.
Hypertension ; 61(5): 1103-10, 2013 May.
Article in English | MEDLINE | ID: mdl-23460290

ABSTRACT

Preeclampsia is a pregnancy-specific condition characterized by an imbalance of circulating angiogenic factors and new-onset hypertension. Although current treatment options are limited, recent studies suggest that pravastatin may improve angiogenic profile and reduce blood pressure in preeclampsia. We hypothesized pravastatin would restore angiogenic balance and reduce mean arterial pressure (MAP) in rats with reduced utero-placental perfusion pressure (RUPP)-induced hypertension. Pravastatin was administered intraperitoneally (1 mg/kg per day) in RUPP (RUPP+P) and normal pregnant rats (NP+P) from day 14 to 19 of pregnancy. On day 19, MAP was measured via catheter, conceptus data were recorded, and tissues collected. MAP was increased (P<0.05) in RUPP compared with NP dams, and pravastatin ameliorated this difference. Pravastatin attenuated decreased fetal weight and plasma vascular endothelial growth factor and the RUPP-induced increased soluble fms-like tyrosine kinase-1 when compared with NP dams. Pravastatin treatment did not improve angiogenic potential in RUPP serum and decreased (P<0.05) endothelial tube formation in NP rats. RUPP rats presented with indices of oxidative stress, such as increased placental catalase activity and plasma thiobarbituric acid reactive substances along with decreased plasma total antioxidant capacity compared with NP controls, and pravastatin attenuated these effects. MAP, fetal weight, plasma vascular endothelial growth factor, and plasma soluble fms-like tyrosine kinase-1 were unchanged in NP+P compared with NP controls. The present data indicate that treatment with pravastatin attenuates oxidative stress and lowers MAP in placental ischemia-induced hypertension, but may have negative effects on circulating angiogenic potential during pregnancy. Further studies are needed to determine whether there are long-term deleterious effects on maternal or fetal health after pravastatin treatment during pregnancy-induced hypertension or preeclampsia.


Subject(s)
Hypertension/prevention & control , Ischemia/complications , Neovascularization, Physiologic/drug effects , Oxidative Stress/drug effects , Placenta/blood supply , Pravastatin/pharmacology , Pravastatin/therapeutic use , Animals , Blood Pressure/drug effects , Blood Pressure/physiology , Cells, Cultured , Disease Models, Animal , Female , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hypertension/etiology , Hypertension/physiopathology , Neovascularization, Physiologic/physiology , Oxidative Stress/physiology , Pre-Eclampsia/prevention & control , Pregnancy , Rats , Rats, Sprague-Dawley , Thiobarbituric Acid Reactive Substances/metabolism , Trophoblasts/cytology , Trophoblasts/drug effects , Trophoblasts/metabolism , Vascular Endothelial Growth Factor A/blood , Vascular Endothelial Growth Factor Receptor-1/blood
13.
Am J Physiol Heart Circ Physiol ; 304(8): H1159-65, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23417865

ABSTRACT

Previous studies suggest restoration of angiogenic balance can lower blood pressure and improve vascular endothelium function in models of preeclampsia. Our laboratory has recently reported exercise training mitigates hypertension in an animal model of preeclampsia, but the mechanisms are unknown. AMP-activated protein kinase (AMPK) is stimulated during exercise and has been shown to increase expression of VEGF. Therefore, the purpose of this study was to determine whether AICAR (5-aminoimidazole-4-carboxamide-3-ribonucleoside), a potent AMPK stimulator, would increase circulating VEGF, improve angiogenic potential, decrease oxidative stress, and abrogate placental ischemia-induced hypertension. In rats, reduced uteroplacental perfusion pressure (RUPP) was induced on day 14 of gestation by introducing silver clips on the inferior abdominal aorta and ovarian arteries. AICAR was administered intraperitoneally (50 mg/kg b.i.d.) days 14-18, and blood pressure and tissues were collected on day 19. RUPP-induced hypertension was ameliorated (P < 0.05) with AICAR versus RUPP. AICAR increased (P < 0.05) plasma VEGF and decreased (P < 0.05) plasma soluble VEGF receptor-1 in the RUPP + AICAR versus RUPP. Antioxidant capacity was restored (P < 0.05) by AICAR in RUPP placenta. Renal and placental catalase activity was decreased (P < 0.05) in RUPP + AICAR versus RUPP. Angiogenic potential was increased (P < 0.05) in RUPP + AICAR versus RUPP. Fetal and placental weights were unaffected by AICAR. Placental AMPK phosphorylation was increased (P < 0.05) in RUPP + AICAR versus normal pregnant and RUPP. These findings suggest AICAR may be useful to mitigate angiogenic imbalance, renal, and placental oxidative stress and increase in blood pressure associated with RUPP hypertension. Furthermore, placental AMPK phosphorylation was observed only in the setting of ischemia.


Subject(s)
AMP-Activated Protein Kinases/drug effects , Aminoimidazole Carboxamide/analogs & derivatives , Hypertension/drug therapy , Pre-Eclampsia/drug therapy , Ribonucleotides/therapeutic use , Vascular Endothelial Growth Factor A/drug effects , AMP-Activated Protein Kinases/metabolism , Aminoimidazole Carboxamide/therapeutic use , Animals , Blood Pressure/drug effects , Disease Models, Animal , Female , Heart Rate/drug effects , Hypertension/metabolism , Ischemia/complications , Ischemia/metabolism , Kidney/drug effects , Kidney/metabolism , Neovascularization, Physiologic/drug effects , Neovascularization, Physiologic/physiology , Oxidative Stress/drug effects , Oxidative Stress/physiology , Phosphorylation/drug effects , Placenta/blood supply , Pre-Eclampsia/metabolism , Pregnancy , Rats , Rats, Sprague-Dawley , Uterus/blood supply , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-1/drug effects , Vascular Endothelial Growth Factor Receptor-1/metabolism
14.
Hypertension ; 60(6): 1545-51, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23090773

ABSTRACT

An imbalance between proangiogenic (vascular endothelial growth factor) and antiangiogenic (soluble fms-like tyrosine kinase 1) factors plays an important role in hypertension associated with reduced uteroplacental perfusion (RUPP). Exercise has been shown to stimulate proangiogenic factors, such as vascular endothelial growth factor, in both the pregnant and nonpregnant state; thus, we hypothesized that exercise training would attenuate both angiogenic imbalance and hypertension attributed to RUPP. Four groups of animals were studied, RUPP and normal pregnant controls and normal pregnant and RUPP+exercise training. Exercise training attenuated RUPP-induced hypertension (P<0.05), decreased soluble fms-like tyrosine kinase 1 (P<0.05), increased VEGF (P<0.05), and elevated the soluble fms-like tyrosine kinase 1:vascular endothelial growth factor ratio. The positive effects of exercise on angiogenic balance in the RUPP rats were confirmed by restoration (P<0.05) of the RUPP-induced decrease in endothelial tube formation in human umbilical vascular endothelial cells treated with serum from each of the experimental groups. Placental prolyl hydroxylase 1 was increased (P<0.05) in RUPP+exercise training rats. Decreased trolox equivalent antioxidant capacity in the placenta, amniotic fluid, and kidney of the RUPP rats was reversed by exercise. RUPP-induced increase in renal thiobarbituric acid reactive species was attenuated by exercise. The present data show that exercise training before and during pregnancy attenuates placental ischemia-induced hypertension, angiogenic imbalance, and oxidative stress in the RUPP rat and reveals that increased prolyl hydroxylase 1 is associated with decreased soluble fms-like tyrosine kinase 1, thus revealing several potential pathways for exercise training to mitigate the effects of placental ischemia-induced hypertension. Lastly, the present study demonstrates that exercise training may be a useful approach to attenuate the development of placental ischemia-induced hypertension during pregnancy.


Subject(s)
Exercise Therapy , Hypertension/therapy , Ischemia/complications , Physical Conditioning, Animal/physiology , Placenta/blood supply , Animals , Blood Pressure/drug effects , Female , Hypertension/etiology , Hypertension/metabolism , Ischemia/metabolism , Oxidative Stress/physiology , Placenta/metabolism , Pregnancy , Procollagen-Proline Dioxygenase/metabolism , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Uterus/blood supply , Uterus/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-1/metabolism
15.
J Biol Chem ; 286(19): 17039-46, 2011 May 13.
Article in English | MEDLINE | ID: mdl-21454476

ABSTRACT

Arp2/3 complex is a key actin filament nucleator that assembles branched actin networks in response to cellular signals. The activity of Arp2/3 complex is regulated by both activating and inhibitory proteins. Coronins make up a large class of actin-binding proteins previously shown to inhibit Arp2/3 complex. Although coronins are known to play a role in controlling actin dynamics in diverse processes, including endocytosis and cell motility, the precise mechanism by which they regulate Arp2/3 complex is unclear. We conducted a detailed biochemical analysis of budding yeast coronin, Crn1, and found that it not only inhibits Arp2/3 complex but also activates it. We mapped regions required for activation and found that Crn1 contains a sequence called CA, which is conserved in WASp/Scar proteins, the prototypical activators of Arp2/3 complex. Point mutations in CA abolished activation of Arp2/3 complex by Crn1 in vitro. Confocal microscopy and quantitative actin patch tracking showed that these mutants had defective endocytic actin patch dynamics in Saccharomyces cerevisiae, indicating that activation of Arp2/3 complex by coronin is required for normal actin dynamics in vivo. The switch between the dual modes of regulation by Crn1 is controlled by concentration, and low concentrations of Crn1 enhance filament binding by Arp2/3 complex, whereas high concentrations block binding. Our data support a direct tethering recruitment model for activation of Arp2/3 complex by Crn1 and suggest that Crn1 indirectly inhibits Arp2/3 complex by blocking it from binding actin filaments.


Subject(s)
Actin-Related Protein 2/metabolism , Actin-Related Protein 3/metabolism , Microfilament Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Actins/chemistry , Actins/metabolism , Amino Acid Sequence , Cytoskeleton/metabolism , Dose-Response Relationship, Drug , Endocytosis , Kinetics , Molecular Conformation , Molecular Sequence Data , Protein Structure, Tertiary , Sequence Homology, Amino Acid
16.
J Contam Hydrol ; 109(1-4): 62-81, 2009 Oct 13.
Article in English | MEDLINE | ID: mdl-19748152

ABSTRACT

Thermal evaporation of a variety of simulated pore waters from the region of Yucca Mountain, Nevada, produced acidic liquids and gases during the final stages of evaporation. Several simulated pore waters were prepared and then thermally distilled in order to collect and analyze fractions of the evolved vapor. In some cases, distillates collected towards the end of the distillation were highly acidic; in other cases the pH of the distillate remained comparatively unchanged during the course of the distillation. The results suggest that the pH values of the later fractions are determined by the initial composition of the water. Acid production stems from the hydrolysis of magnesium ions, especially at near dryness. Near the end of the distillation, magnesium nitrate and magnesium chloride begin to lose water of hydration, greatly accelerating their thermal decomposition to form acid. Acid formation is promoted further when precipitated calcium carbonate is removed. Specifically, calcium chloride-rich pore waters containing moderate (10-20 ppm) levels of magnesium and nitrate and low levels of bicarbonate produced mixtures of nitric and hydrochloric acid, resulting in a precipitous drop in pH to values of 1 or lower after about 95% of the original volume was distilled. Waters with either low or moderate magnesium content coupled with high levels of bicarbonate produced slightly basic fractions (pH 7-9). If calcium was present in excess of bicarbonate, waters containing moderate levels of magnesium produced acid even in the presence of bicarbonate, due to the precipitation of calcium carbonate. Other salts such as halite and anhydrite promote the segregation of acidic vapors from residual basic solids. The concomitant release of wet acid gas has implications for the integrity of the alloys under consideration for containers at the Yucca Mountain nuclear waste repository. Condensed acid gases at very low pH, especially mixtures of nitric and hydrochloric acid, are capable of corroding even alloys, such as nickel-based Alloy 22, which are considered to be corrosion-resistant under milder conditions.


Subject(s)
Water Pollutants/analysis , Water/chemistry , Chemical Fractionation , Distillation , Environmental Monitoring , Hydrogen-Ion Concentration , Ions , Nevada , Phase Transition , Temperature , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL
...