Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 7(43): 39090-39096, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36340095

ABSTRACT

Electrochromism refers to the persistent and reversible change in color by applying an electric field. The phenomenon involves the insertion and extraction of electrons and ions within the active material. There is a keen interest in electrochromic (EC) materials, since they exhibit a wide range of potential applications. In recent years, transition-metal oxides have been widely investigated as EC materials due to their low power requirement, high coloration efficiency, and memory effect under an open-circuit condition. Nickel oxide (NiO), a p-type wide band gap semiconductor, exhibits attractive features such as a high color contrast ratio, good chemical stability, cost-effectiveness, and good compatibility with the cathodically coloring tungsten oxide. NiO thin films have been fabricated by various methods, but these are not cost-effective, scalable, or suitable for flexible applications. With the increasing demand for flexible and soft EC devices, it is essential to find routes to fabricate NiO thin films at lower temperatures. In this work, a NiO/Ni(OH)2-based thin EC layer on fluorine-doped tin oxide-coated glass is developed via an electroless nickel (EN) deposition route, followed by room-temperature electrochemical oxidation. The deposition time is optimized to control the film thickness. The EC performance is investigated in an aqueous alkaline electrolyte (1 M KOH) by means of cyclic voltammetry, chronoamperometry, and transmittance measurements. Both the as-deposited and annealed films, after electrochemical oxidation, exhibit excellent EC properties with an optical modulation of approximately 64% (at 550 nm) and good response times of approximately 3 s (coloration) and 14 s (bleaching). A 2 × 2 display obtained by patterning the EN deposition is also demonstrated as part of this work.

2.
Rev Sci Instrum ; 86(9): 096101, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26429488

ABSTRACT

A microelectrochemical cell housed in an optical microscope and custom-made accessories have been designed and fabricated, which allows performing spatially resolved corrosion measurements. The cell assembly was designed to directly integrate the reference electrode close to the capillary tip to avoid air bubbles. A hard disk along with an old optical microscope was re-engineered into a microgrinder, which made the vertical grinding of glass capillary tips very easy. A stepper motor was customized into a microsyringe pump to dispense a controlled volume of electrolyte through the capillary. A force sensitive resistor was used to achieve constant wetting area. The functionality of the developed instrument is demonstrated by studying µ-electrochemical behavior of worn surface on AA2014-T6 alloy.

3.
Mater Sci Eng C Mater Biol Appl ; 49: 567-578, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25686985

ABSTRACT

In this study, TiO2 nanotubes were fabricated using anodic oxidation in fluoride containing weak organic acid for different durations (0.5h, 1h, 2h and 3h). Scanning electron microscope (SEM) micrographs reveal that the morphology of titanium oxide varies with anodization time. Raman spectroscopy and X-ray diffraction (XRD) results indicate that the as-formed oxide nanotubes were amorphous in nature, yet transform into crystalline phases (anatase and rutile) upon annealing at 600°C. Wettability measurements show that both as-formed and annealed nanotubes exhibited hydrophilic behavior. The electrochemical behavior was ascertained by DC polarization and AC electrochemical impedance spectroscopy (EIS) measurements in 0.9% NaCl solution. The results suggest that the annealed nanotubes showed higher impedance (10(5)-10(6)Ωcm(2)) and lower passive current density (10(-7)Acm(-2)) than the as-formed nanotubes. In addition, we investigated the influence of post heat treatment on the semiconducting properties of the oxides by capacitance measurements. In vitro bioactivity test in simulated body fluid (SBF) showed that precipitation of Ca/P is easier in crystallized nanotubes than the amorphous structure. Our study uses a simple strategy to prepare nano-structured titania films and hints the feasibility of tailoring the oxide properties by thermal treatment, producing surfaces with better bioactivity.


Subject(s)
Electrolytes/chemistry , Nanotubes/chemistry , Organic Chemicals/chemistry , Oxides/chemistry , Titanium/chemistry , Crystallization/methods , Microscopy, Electron, Scanning/methods , Oxidation-Reduction , Spectrum Analysis, Raman/methods , Surface Properties , Wettability , X-Ray Diffraction/methods
4.
Rev Sci Instrum ; 84(3): 035102, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23556847

ABSTRACT

The current investigation proposes a novel method for simultaneous assessment of the electrochemical and structural fatigue properties of nickel-titanium shape memory alloy (NiTi SMA) wires. The design and layout of an in situ electrochemical cell in a custom-made bending rotation fatigue (BRF) test rig is presented. This newly designed test rig allows performing a wide spectrum of experiments for studying the influence of fatigue on corrosion and vice versa. This can be achieved by performing ex situ and∕or in situ measurements. The versatility of the combined electrochemical∕mechanical test rig is demonstrated by studying the electrochemical behavior of NiTi SMA wires in 0.9% NaCl electrolyte under load. The ex situ measurements allow addressing various issues, for example, the influence of pre-fatigue on the localized corrosion resistance, or the influence of hydrogen on fatigue life. Ex situ experiments showed that a pre-fatigued wire is more susceptible to localized corrosion. The synergetic effect can be concluded from the polarization studies and specifically from an in situ study of the open circuit potential (OCP) transients, which sensitively react to the elementary repassivation events related to the local failure of the oxide layer. It can also be used as an indicator for identifying the onset of the fatigue failure.


Subject(s)
Biocompatible Materials/chemistry , Dental Alloys/chemistry , Electrochemistry/instrumentation , Electrochemistry/methods , Equipment Design , Materials Testing , Microscopy, Electron, Scanning/methods , Models, Theoretical , Nickel , Orthodontic Wires , Orthodontics , Potentiometry/methods , Stress, Mechanical , Tensile Strength , Titanium
5.
Rev Sci Instrum ; 81(3): 033902, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20370187

ABSTRACT

An in situ tensile rig is proposed, which allows performing electrochemical (repassivation) experiments during dynamic mechanical testing of wires. Utilizing the basic components of a conventional tensile tester, a custom-made minitensile rig was designed and fabricated. The maximal force that can be measured by the force sensor is 80 N, with a sensitivity of 0.5 mV/V. The maximum travel range of the crosshead induced by the motor is 10 mm with a minimum step size of 0.5 nm. The functionality of the tensile test rig was validated by investigating Cu and shape memory NiTi wires. Wires of lengths between 40 and 50 mm with varying gauge lengths can be tested. An interface between wire and electrochemical setup (noncontact) with a smart arrangement of electrodes facilitated the electrochemical measurements during tensile loading. Preliminary results on the repassivation behavior of Al wire are reported.


Subject(s)
Electrochemical Techniques/instrumentation , Aluminum , Copper , Elasticity , Electric Wiring , Electrochemical Techniques/methods , Electrodes , Equipment Design , Materials Testing/instrumentation , Materials Testing/methods , Microscopy, Electron, Scanning , Nickel , Oxides , Software , Titanium , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...