Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
1.
Carbohydr Res ; 539: 109119, 2024 May.
Article in English | MEDLINE | ID: mdl-38653028

ABSTRACT

Photodynamic therapy (PDT) uses photosensitizing agents along with light to ablate tissue, including cancers. Such light-driven localized delivery of free-radical oxygen to kill target tissue depends on photosensitizer cell penetration efficacy. While the attachment of monosaccharides and disaccharides to photosensitizers has been shown to potentially provide improved photosensitizer delivery, the range of glycan entities tested thus far is limited. We sought to expand such knowledge by coupling N-acetylglucosamine (GlcNAc) to pyropheophorbides as thioglycosides, and then testing photosensitizer efficacy. To this end, GlcNAc was conjugated to both pyropheophorbide-a and methyl pyropheophorbide-a. Among the entities tested, the conjugation of N-acetylglucosamine to methyl pyropheophorbide-a ('PSe') as thioglycoside enhanced cell uptake both in the presence and absence of human serum proteins, relative to other compounds tested. The enhanced PSe penetrance into cells resulted in higher cell death upon illumination with 665 nm light. While acting as a potent photosensitizer, PSe did not affect cellular carbohydrate profiles. Overall, the study presents a new pyropheophorbide glycoconjugate with strong in vitro PDT efficacy.


Subject(s)
Chlorophyll/analogs & derivatives , Photochemotherapy , Photosensitizing Agents , Thioglycosides , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemical synthesis , Humans , Thioglycosides/chemistry , Thioglycosides/pharmacology , Chlorophyll/chemistry , Chlorophyll/pharmacology , Cell Survival/drug effects , Light
3.
Nat Mater ; 23(3): 429-438, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38361041

ABSTRACT

Cancer cell glycocalyx is a major line of defence against immune surveillance. However, how specific physical properties of the glycocalyx are regulated on a molecular level, contribute to immune evasion and may be overcome through immunoengineering must be resolved. Here we report how cancer-associated mucins and their glycosylation contribute to the nanoscale material thickness of the glycocalyx and consequently modulate the functional interactions with cytotoxic immune cells. Natural-killer-cell-mediated cytotoxicity is inversely correlated with the glycocalyx thickness of the target cells. Changes in glycocalyx thickness of approximately 10 nm can alter the susceptibility to immune cell attack. Enhanced stimulation of natural killer and T cells through equipment with chimeric antigen receptors can improve the cytotoxicity against mucin-bearing target cells. Alternatively, cytotoxicity can be enhanced through engineering effector cells to display glycocalyx-editing enzymes, including mucinases and sialidases. Together, our results motivate the development of immunoengineering strategies that overcome the glycocalyx armour of cancer cells.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Glycocalyx/metabolism , Mucins/metabolism , Antineoplastic Agents/metabolism , Neoplasms/therapy
4.
bioRxiv ; 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38260527

ABSTRACT

While single cell studies have made significant impacts in various subfields of biology, they lag in the Glycosciences. To address this gap, we analyzed single-cell glycogene expressions in the Tabula Sapiens dataset of human tissues and cell types using a recent glycosylation-specific gene ontology (GlycoEnzOnto). At the median sequencing (count) depth, ~40-50 out of 400 glycogenes were detected in individual cells. Upon increasing the sequencing depth, the number of detectable glycogenes saturates at ~200 glycogenes, suggesting that the average human cell expresses about half of the glycogene repertoire. Hierarchies in glycogene and glycopathway expressions emerged from our analysis: nucleotide-sugar synthesis and transport exhibited the highest gene expressions, followed by genes for core enzymes, glycan modification and extensions, and finally terminal modifications. Interestingly, the same cell types showed variable glycopathway expressions based on their organ or tissue origin, suggesting nuanced cell- and tissue-specific glycosylation patterns. Probing deeper into the transcription factors (TFs) of glycogenes, we identified distinct groupings of TFs controlling different aspects of glycosylation: core biosynthesis, terminal modifications, etc. We present webtools to explore the interconnections across glycogenes, glycopathways, and TFs regulating glycosylation in human cell/tissue types. Overall, the study presents an overview of glycosylation across multiple human organ systems.

5.
J Virol ; 97(11): e0090623, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37843369

ABSTRACT

IMPORTANCE: It is well known that influenza A viruses (IAV) initiate host cell infection by binding to sialic acid, a sugar molecule present at the ends of various sugar chains called glycoconjugates. These sugar chains can vary in chain length, structure, and composition. However, it remains unknown if IAV strains preferentially bind to sialic acid on specific glycoconjugate type(s) for host cell infection. Here, we utilized CRISPR gene editing to abolish sialic acid on different glycoconjugate types in human lung cells, and evaluated human versus avian IAV infections. Our studies show that both human and avian IAV strains can infect human lung cells by utilizing any of the three major sialic acid-containing glycoconjugate types, specifically N-glycans, O-glycans, and glycolipids. Interestingly, simultaneous elimination of sialic acid on all three major glycoconjugate types in human lung cells dramatically decreased human IAV infection, yet had little effect on avian IAV infection. These studies show that avian IAV strains effectively utilize other less prevalent glycoconjugates for infection, whereas human IAV strains rely on a limited repertoire of glycoconjugate types. The remarkable ability of avian IAV strains to utilize diverse glycoconjugate types may allow for easy transmission into new host species.


Subject(s)
Influenza A virus , Influenza, Human , Lung , Receptors, Cell Surface , Animals , Humans , Carrier Proteins/metabolism , Glycoconjugates/metabolism , Influenza A virus/metabolism , Lung/virology , N-Acetylneuraminic Acid/metabolism , Polysaccharides/metabolism , Sugars/metabolism , Influenza in Birds/metabolism , Receptors, Cell Surface/metabolism , Receptors, Virus/metabolism
6.
Mol Oncol ; 17(10): 2056-2073, 2023 10.
Article in English | MEDLINE | ID: mdl-37558205

ABSTRACT

During epithelial-mesenchymal transition (EMT) in cancer progression, tumor cells switch cadherin profile from E-cadherin to cadherin-11 (CDH11), which is accompanied by increased invasiveness and metastatic activity. However, the mechanism through which CDH11 may affect tumor growth and metastasis remains elusive. Here, we report that CDH11 was highly expressed in multiple human tumors and was localized on the membrane, in the cytoplasm and, surprisingly, also in the nucleus. Interestingly, ß-catenin remained bound to carboxy-terminal fragments (CTFs) of CDH11, the products of CDH11 cleavage, and co-localized with CTFs in the nucleus in the majority of breast cancer samples. Binding of ß-catenin to CTFs preserved ß-catenin activity, whereas inhibiting CDH11 cleavage led to ß-catenin phosphorylation and diminished Wnt signaling, similar to CDH11 knockout. Our data elucidate a previously unknown role of CDH11, which serves to stabilize ß-catenin in the cytoplasm and facilitates its translocation to the nucleus, resulting in activation of Wnt signaling, with subsequent increased proliferation, migration and invasion potential.


Subject(s)
Neoplasms , beta Catenin , Humans , beta Catenin/metabolism , Wnt Signaling Pathway , Cadherins/metabolism , Cell Proliferation , Epithelial-Mesenchymal Transition , Cell Line, Tumor , Cell Movement
7.
bioRxiv ; 2023 Aug 19.
Article in English | MEDLINE | ID: mdl-37645985

ABSTRACT

The recruitment of peripheral blood neutrophils at sites of inflammation involves a multistep cascade, starting with E- and P-selectin expressed on the inflamed vascular endothelium binding sialofucosylated glycans on leukocytes. As the glycoconjugate biosynthesis pathways in different cells are distinct, the precise carbohydrate ligands of selectins varies both across species, and between different immune cell populations in a given species. To study this aspect in human neutrophils, we developed a protocol to perform CRISPR/Cas9 gene-editing on CD34+ hHSCs (human hematopoietic stem/progenitor cells) as they are differentiated towards neutrophil lineage. This protocol initially uses a cocktail of SCF (stem-cell factor), IL-3 (interleukin-3) and FLT-3L (FMS-like tyrosine kinase 3 ligand) to expand the stem/progenitor cells followed by directed differentiation to neutrophils using G-CSF (granulocyte colony-stimulating factor). Microfluidics based assays were performed on a confocal microscope platform to characterize the rolling phenotype of each edited cell type in mixed populations. These studies demonstrated that CD44, but not CD43, is a major E-selectin ligand on human neutrophils. The loss of function results were validated by developing sialofucosylated recombinant CD44. This glycosylated protein supported both robust E-selectin binding in a cell-free assay, and it competitively blocked neutrophil adhesion to E-selectin on inflamed endothelial cells. Together, the study establishes important methods to study human neutrophil biology and determines that sialoflucosylated-CD44 is a physiological human E-selectin ligand.

8.
Glycobiology ; 33(2): 99-103, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36648443

ABSTRACT

Nonulosonic acids or non-2-ulosonic acids (NulOs) are an ancient family of 2-ketoaldonic acids (α-ketoaldonic acids) with a 9-carbon backbone. In nature, these monosaccharides occur either in a 3-deoxy form (referred to as "sialic acids") or in a 3,9-dideoxy "sialic-acid-like" form. The former sialic acids are most common in the deuterostome lineage, including vertebrates, and mimicked by some of their pathogens. The latter sialic-acid-like molecules are found in bacteria and archaea. NulOs are often prominently positioned at the outermost tips of cell surface glycans, and have many key roles in evolution, biology and disease. The diversity of stereochemistry and structural modifications among the NulOs contributes to more than 90 sialic acid forms and 50 sialic-acid-like variants described thus far in nature. This paper reports the curation of these diverse naturally occurring NulOs at the NCBI sialic acid page (https://www.ncbi.nlm.nih.gov/glycans/sialic.html) as part of the NCBI-Glycans initiative. This includes external links to relevant Carbohydrate Structure Databases. As the amino and hydroxyl groups of these monosaccharides are extensively derivatized by various substituents in nature, the Symbol Nomenclature For Glycans (SNFG) rules have been expanded to represent this natural diversity. These developments help illustrate the natural diversity of sialic acids and related NulOs, and enable their systematic representation in publications and online resources.


Subject(s)
N-Acetylneuraminic Acid , Sialic Acids , Animals , Sialic Acids/chemistry , Polysaccharides/chemistry , Monosaccharides , Cataloging
9.
Bioinformatics ; 38(24): 5413-5420, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36282863

ABSTRACT

MOTIVATION: The 'glycoEnzymes' include a set of proteins having related enzymatic, metabolic, transport, structural and cofactor functions. Currently, there is no established ontology to describe glycoEnzyme properties and to relate them to glycan biosynthesis pathways. RESULTS: We present GlycoEnzOnto, an ontology describing 403 human glycoEnzymes curated along 139 glycosylation pathways, 134 molecular functions and 22 cellular compartments. The pathways described regulate nucleotide-sugar metabolism, glycosyl-substrate/donor transport, glycan biosynthesis and degradation. The role of each enzyme in the glycosylation initiation, elongation/branching and capping/termination phases is described. IUPAC linear strings present systematic human/machine-readable descriptions of individual reaction steps and enable automated knowledge-based curation of biochemical networks. All GlycoEnzOnto knowledge is integrated with the Gene Ontology biological processes. GlycoEnzOnto enables improved transcript overrepresentation analyses and glycosylation pathway identification compared to other available schema, e.g. KEGG and Reactome. Overall, GlycoEnzOnto represents a holistic glycoinformatics resource for systems-level analyses. AVAILABILITY AND IMPLEMENTATION: https://github.com/neel-lab/GlycoEnzOnto. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Knowledge Bases , Polysaccharides , Humans , Gene Ontology , Glycosylation
10.
Sci Adv ; 8(38): eabq8678, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36149962

ABSTRACT

Functional and epidemiological data suggest that N-linked glycans on the SARS-CoV-2 Spike protein may contribute to viral infectivity. To investigate this, we created a panel of N-to-Q mutations at N-glycosylation sites proximal to the Spike S1-S2 (N61, N603, N657, and N616) and S2' (N603 and N801) proteolysis sites. Some of these mutations, particularly N61Q and N801Q, reduced Spike incorporation into Spike-pseudotyped lentivirus and authentic SARS-CoV-2 virus-like particles (VLPs). These mutations also reduced pseudovirus and VLP entry into ACE2-expressing cells by 80 to 90%. In contrast, glycan mutations had a relatively minor effect on cell surface expression of Spike, ACE2 binding, and syncytia formation. A similar dichotomy in function was observed when virus was produced in host cells lacking ER chaperones, calnexin and calreticulin. Here, while both chaperones regulated pseudovirus function, only VLPs produced in calnexin KOs were less infectious. Overall, Spike N-glycans are likely critical for SARS-CoV-2 function and could serve as drug targets for COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Calnexin/genetics , Calnexin/metabolism , Calreticulin , Humans , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Polysaccharides/metabolism , Spike Glycoprotein, Coronavirus
11.
Curr Protoc ; 2(4): e402, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35427438

ABSTRACT

CRISPR-Cas9-based forward genetic screens represent a powerful discovery platform to uncover genes regulating specific biological processes. This article describes a method for utilizing a freely available GlycoGene CRISPR library to knock out any gene participating in human glycosylation in arbitrary cell types. The end product is a stable GlycoGene CRISPR knockout cell library, where each cell contains one or more sgRNA and lacks corresponding function. The cell library can be screened using various lectin/antibody reagents. It can also be applied in functional assays to establish glycan structure-glycogene-glycopathway relationships. This is a powerful systems glycobiology strategy for dissecting glycosylation pathways and processes. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Scale-up and NGS validation of the GlycoGene CRISPR plasmid library Basic Protocol 2: Preparation of a GlycoGene CRISPR lentivirus pool and an isogenic cell line stably expressing Cas9 nuclease Basic Protocol 3: Preparation of a GlycoGene CRISPR cell library, self-inactivation of Cas9, and library validation by NGS Basic Protocol 4: Enrichment of lectin-binding or non-binding cells and related multiplex NGS data acquisition Basic Protocol 5: Bioinformatics pathway analysis.


Subject(s)
CRISPR-Cas Systems , Genetic Testing , CRISPR-Cas Systems/genetics , Gene Library , Glycosylation , Humans , Lectins/genetics
12.
Methods Mol Biol ; 2370: 97-113, 2022.
Article in English | MEDLINE | ID: mdl-34611866

ABSTRACT

Glycan profiling is a common strategy that is used to determine the distribution of N-linked glycans, O-linked glycans and glycolipid associated complex carbohydrate structures that are part of various cell and tissue sources. Such data are central to our understanding of functional glycomics, and this knowledge can also be used for pathway construction and other applications in the field of Systems Glycobiology. Glycans released from cell/tissue samples are often studied in their free-form. They can also be functionalized with aglycones like 2-aminobenzamide (2AB) and procainamide to enhance separation and improve ionization during liquid chromatography/mass spectrometry. Additionally, these released glycans may be permethylated in order to improve glycan quantitation. In such work, besides studying the glycans in a single sample, there is also interest in comparing multiple samples in order to determine underlying similarities and differences, for example in terms of specific epitopes that are changed when cells of the same origin differentiate along different pathways. The current chapter describes the development and usage of cGlyco ("comparative Glycomics"), an open-source program that can be used to compare data from multiple mass spectrometry runs. As an example, we apply cGlyco to compare the glycan profile of multiple MALDI-TOF glycomics profiling data collected by core-C of the Consortium for Functional Glycomics (CFG).


Subject(s)
Glycomics , Chromatography, Liquid , Glycoproteins , Polysaccharides , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
14.
Glycobiology ; 32(3): 218-229, 2022 03 30.
Article in English | MEDLINE | ID: mdl-34939086

ABSTRACT

We recently discovered that human neutrophils express immunomodulatory glycoproteins carrying unusual and highly truncated paucimannosidic N-glycans (Man1-3GlcNAc2Fuc0-1), but their biosynthesis remains elusive. Guided by the well-characterized truncation pathway in invertebrates and plants in which the N-acetyl-ß-D-hexosaminidase (Hex) isoenzymes catalyze paucimannosidic protein (PMP) formation, we here set out to test if the homologous human Hex α and ß subunits encoded by HEXA and HEXB drive a similar truncation pathway in human neutrophils. To this end, we performed quantitative glycomics and glycoproteomics of several CRISPR-Cas9-edited Hex-disrupted neutrophil-like HL-60 mutants (HEXA-KO and HEXB-KO) and matching unedited cell lines. Hex disruption was validated using next-generation sequencing, enzyme-linked immunosorbent assay (ELISA), quantitative proteomics and Hex activity assays. Excitingly, all Hex-disrupted mutants displayed significantly reduced levels of paucimannosylation, particularly Man2-3GlcNAc2Fuc1, relative to unedited HL-60 suggesting that both HEXA and HEXB contribute to PMP formation via a hitherto unexplored truncation pathway in neutrophils. Quantitative N-glycomics indeed demonstrated reduced utilization of a putative noncanonical truncation pathway in favor of the canonical elongation pathway in all Hex-disrupted mutants relative to unedited controls. Quantitative glycoproteomics recapitulated the truncation-to-elongation switch in all Hex-disrupted mutants and showed a greater switch for N-glycoproteins cotrafficking with Hex to the azurophilic granules of neutrophils such as myeloperoxidase. Finally, we supported the Hex-PMP relationship by documenting that primary neutrophils isolated from an early-onset Sandhoff disease patient (HEXB-/-) displayed dramatically reduced paucimannosylation relative to neutrophils from an age-matched unaffected donor. We conclude that both human Hex α and ß mediate PMP formation via a putative noncanonical truncation pathway in neutrophils.


Subject(s)
Hexosaminidases , Neutrophils , Hexosaminidase A , Hexosaminidase B , Humans , beta-N-Acetylhexosaminidases/genetics
15.
Nat Methods ; 18(11): 1304-1316, 2021 11.
Article in English | MEDLINE | ID: mdl-34725484

ABSTRACT

Glycoproteomics is a powerful yet analytically challenging research tool. Software packages aiding the interpretation of complex glycopeptide tandem mass spectra have appeared, but their relative performance remains untested. Conducted through the HUPO Human Glycoproteomics Initiative, this community study, comprising both developers and users of glycoproteomics software, evaluates solutions for system-wide glycopeptide analysis. The same mass spectrometrybased glycoproteomics datasets from human serum were shared with participants and the relative team performance for N- and O-glycopeptide data analysis was comprehensively established by orthogonal performance tests. Although the results were variable, several high-performance glycoproteomics informatics strategies were identified. Deep analysis of the data revealed key performance-associated search parameters and led to recommendations for improved 'high-coverage' and 'high-accuracy' glycoproteomics search solutions. This study concludes that diverse software packages for comprehensive glycopeptide data analysis exist, points to several high-performance search strategies and specifies key variables that will guide future software developments and assist informatics decision-making in glycoproteomics.


Subject(s)
Glycopeptides/blood , Glycoproteins/blood , Informatics/methods , Proteome/analysis , Proteomics/methods , Research Personnel/statistics & numerical data , Software , Glycosylation , Humans , Proteome/metabolism , Tandem Mass Spectrometry
16.
Molecules ; 26(19)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34641494

ABSTRACT

Glycans have been shown to play a key role in many biological processes, such as signal transduction, immunogenicity, and disease progression. Among the various glycosylation modifications found on cell surfaces and in biomolecules, sialylation is especially important, because sialic acids are typically found at the terminus of glycans and have unique negatively charged moieties associated with cellular and molecular interactions. Sialic acids are also crucial for glycosylated biopharmaceutics, where they promote stability and activity. In this regard, heterogenous sialylation may produce variability in efficacy and limit therapeutic applications. Homogenous sialylation may be achieved through cellular and molecular engineering, both of which have gained traction in recent years. In this paper, we describe the engineering of intracellular glycosylation pathways through targeted disruption and the introduction of carbohydrate active enzyme genes. The focus of this review is on sialic acid-related genes and efforts to achieve homogenous, humanlike sialylation in model hosts. We also discuss the molecular engineering of sialyltransferases and their application in chemoenzymatic sialylation and sialic acid visualization on cell surfaces. The integration of these complementary engineering strategies will be useful for glycoscience to explore the biological significance of sialic acids on cell surfaces as well as the future development of advanced biopharmaceuticals.


Subject(s)
Polysaccharides/chemistry , Sialic Acids/chemistry , Sialyltransferases/chemistry , Animals , Glycosylation , Humans , Sialyltransferases/metabolism
17.
Beilstein J Org Chem ; 17: 1712-1724, 2021.
Article in English | MEDLINE | ID: mdl-34367349

ABSTRACT

Glycosylation is a common posttranslational modification, and glycan biosynthesis is regulated by a set of glycogenes. The role of transcription factors (TFs) in regulating the glycogenes and related glycosylation pathways is largely unknown. In this work, we performed data mining of TF-glycogene relationships from the Cistrome Cancer database (DB), which integrates chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA-Seq data to constitute regulatory relationships. In total, we observed 22,654 potentially significant TF-glycogene relationships, which include interactions involving 526 unique TFs and 341 glycogenes that span 29 the Cancer Genome Atlas (TCGA) cancer types. Here, TF-glycogene interactions appeared in clusters or so-called communities, suggesting that changes in single TF expression during both health and disease may affect multiple carbohydrate structures. Upon applying the Fisher's exact test along with glycogene pathway classification, we identified TFs that may specifically regulate the biosynthesis of individual glycan types. Integration with Reactome DB knowledge provided an avenue to relate cell-signaling pathways to TFs and cellular glycosylation state. Whereas analysis results are presented for all 29 cancer types, specific focus is placed on human luminal and basal breast cancer disease progression. Overall, the article presents a computational approach to describe TF-glycogene relationships, the starting point for experimental system-wide validation.

18.
Biomaterials ; 276: 121048, 2021 09.
Article in English | MEDLINE | ID: mdl-34343858

ABSTRACT

The efficacy of cell-based therapies relies on targeted payload delivery and enhanced cell retention. In vitro and in vivo studies suggest that the glycoengineering of mesenchymal and cardiosphere-derived cells (CDCs) may enhance such recruitment at sites of injury. We evaluated the role of blood cells in amplifying this recruitment. Thus, the human α(1,3)fucosyltransferase FUT7 was stably expressed in CDCs, sometimes with P-selectin glycoprotein ligand-1 (PSGL-1/CD162). Such FUT7 over-expression resulted in cell-surface sialyl Lewis-X (sLeX) expression, at levels comparable to blood neutrophils. Whereas FUT7 was sufficient for CDC recruitment on substrates bearing E-selectin under flow, PSGL-1 co-expression was necessary for P-/L-selectin binding. In both cone-plate viscometer and flow chamber studies, chemokine driven neutrophil activation promoted the adhesion of glycoengineered-CDCs to blood cells. Here, blood neutrophils activated upon contact with IL-1ß stimulated endothelial cells, amplified glycoengineered-CDC recruitment. In vivo, local inflammation in a mouse ear elicited both glycoengineered-CDC and peripheral blood neutrophil homing to the inflamed site. Glycoengineering CDCs also resulted in enhanced (~16%) cell retention at 24 h in a murine myocardial infarction model, with CDCs often co-localized with blood neutrophils. Overall, peripheral blood neutrophils, activated at sites of injury, may enhance recruitment of glycoengineered cellular therapeutics via secondary capture mechanisms.


Subject(s)
Endothelial Cells , Neutrophils , Animals , Cell Adhesion , Inflammation , Mice , P-Selectin , Stem Cells
19.
Adv Nanobiomed Res ; 1(1)2021 Jan.
Article in English | MEDLINE | ID: mdl-34212160

ABSTRACT

A method is developed for membrane labeling of erythrocytes with porphyrin-phospholipid (PoP). To generate a concentrated PoP solution for labeling human red blood cells (RBCs), various surfactants and solvents are screened to identify conditions that avoid hemolysis, while minimizing non-specific PoP co-precipitation with RBCs in the pellet during centrifugation washes. Cholate, Tween 80 and Tween 40 are identified as useful surfactants for this purpose. When labeled RBCs are mixed with unlabeled ones, substantial non-specific PoP exchange is observed. Egg-yolk lecithin is included in a washing buffer to remove loosely bound PoP and reduce PoP exchange with unlabeled erythrocytes, based on flow cytometry and photodynamic hemolysis assays. Murine RBCs that are labeled with 64Cu-chelated PoP displayed altered biodistribution with longer blood circulation relative to directly administered 64Cu-chelated PoP.

20.
Kidney Int ; 100(4): 824-836, 2021 10.
Article in English | MEDLINE | ID: mdl-34139209

ABSTRACT

Factor H (FH) is a critical regulator of the alternative complement pathway and its deficiency or mutation underlie kidney diseases such as dense deposit disease. Since vascular dysfunction is an important facet of kidney disease, maintaining optimal function of the lining endothelial cells is important for vascular health. To investigate the molecular mechanisms that are regulated by FH in endothelial cells, FH deficient and sufficient mouse kidney endothelial cell cultures were established. Endothelial FH deficiency resulted in cytoskeletal remodeling, increased angiogenic potential, loss of cellular layer integrity and increased cell proliferation. FH reconstitution prevented these FH-dependent proliferative changes. Respiratory flux analysis showed reduced basal mitochondrial respiration, ATP production and maximal respiratory capacity in FH deficient endothelial cells, while proton leak remained unaltered. Similar changes were observed in FH deficient human glomerular endothelial cells indicating the translational potential of these studies. Gene expression analysis revealed that the FH-dependent gene changes in mouse kidney endothelial cells include significant upregulation of genes involved in inflammation and the complement system. The transcription factor nuclear factor-kB, that regulates many biological processes, was translocated from the cytoplasm to the nucleus in the absence of FH. Thus, our studies show the functional relevance of intrinsic FH in kidney endothelial cells in man and mouse.


Subject(s)
Complement Factor H , Kidney Diseases , Animals , Complement Factor H/genetics , Complement Pathway, Alternative , Endothelial Cells , Humans , Kidney , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...