Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
2.
Article in English | MEDLINE | ID: mdl-37402924

ABSTRACT

This study highlights the potential of the microbial fuel cell (MFC)-based bio-electro-Fenton (BEF) process as an efficient and highly adaptable strategy for wastewater treatment. The research aims to optimize the pH of the cathodic chamber (3-7) and catalyst doses (Fe) (0-18.56%) on the graphite felt (GF) cathode, and examine the effect of operating parameters on chemical oxygen demand (COD) removal, mineralization efficiency, pharmaceuticals (ampicillin, diclofenac, and paracetamol) removal, and power generation. The study found that lower pH and higher catalyst dosage on the GF led to better performance of the MFC-BEF system. Under neutral pH, mineralization efficiency, paracetamol removal, and ampicillin removal were enhanced by 1.1 times, and power density improved by 1.25 times as catalyst dosage increased from 0 to 18.56%. Additionally, employing full factorial design (FFD) statistical optimization, the study identifies the optimized conditions for maximum COD removal, mineralization efficiency, and power generation, which are determined to be a pH of 3.82 and a catalyst dose of 18.56%.

SELECTION OF CITATIONS
SEARCH DETAIL
...