Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Front Plant Sci ; 2: 32, 2011.
Article in English | MEDLINE | ID: mdl-22639590

ABSTRACT

The promoter of the salicylic acid-inducible PR-1a gene of Nicotiana tabacum contains binding sites for transcription factor NtWRKY12 (WK-box at position -564) and TGA factors (as-1-like element at position -592). Transactivation experiments in Arabidopsis protoplasts derived from wild type, npr1-1, tga256, and tga2356 mutant plants revealed that NtWRKY12 alone was able to induce a PR-1a::ß-glucuronidase (GUS) reporter gene to high levels, independent of co-expressed tobacco NtNPR1, TGA2.1, TGA2.2, or endogenous Arabidopsis NPR1, TGA2/3/5/6. By in vitro pull-down assays with GST and Strep fusion proteins and by Fluorescence Resonance Energy Transfer assays with protein-CFP and protein-YFP fusions in transfected protoplasts, it was shown that NtWRKY12 and TGA2.2 could interact in vitro and in vivo. Interaction of NtWRKY12 with TGA1a or TGA2.1 was not detectable by these techniques. A possible mechanism for the role of NtWRKY12 and TGA2.2 in PR-1a gene expression is discussed.

2.
Plant Physiol ; 146(4): 1983-95, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18263781

ABSTRACT

PR-1a is a salicylic acid-inducible defense gene of tobacco (Nicotiana tabacum). One-hybrid screens identified a novel tobacco WRKY transcription factor (NtWRKY12) with specific binding sites in the PR-1a promoter at positions -564 (box WK(1)) and -859 (box WK(2)). NtWRKY12 belongs to the class of transcription factors in which the WRKY sequence is followed by a GKK rather than a GQK sequence. The binding sequence of NtWRKY12 (WK box TTTTCCAC) deviated significantly from the consensus sequence (W box TTGAC[C/T]) shown to be recognized by WRKY factors with the GQK sequence. Mutation of the GKK sequence in NtWRKY12 into GQK or GEK abolished binding to the WK box. The WK(1) box is in close proximity to binding sites in the PR-1a promoter for transcription factors TGA1a (as-1 box) and Myb1 (MBSII box). Expression studies with PR-1a promoterbeta-glucuronidase (GUS) genes in stably and transiently transformed tobacco indicated that NtWRKY12 and TGA1a act synergistically in PR-1a expression induced by salicylic acid and bacterial elicitors. Cotransfection of Arabidopsis thaliana protoplasts with 35SNtWRKY12 and PR-1aGUS promoter fusions showed that overexpression of NtWRKY12 resulted in a strong increase in GUS expression, which required functional WK boxes in the PR-1a promoter.


Subject(s)
Gene Expression Regulation, Plant , Genes, Plant , Nicotiana/genetics , Salicylic Acid/metabolism , Transcription Factors/physiology , Base Sequence , Binding Sites , DNA, Plant , Glucuronidase/genetics , Molecular Sequence Data , Promoter Regions, Genetic , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Nucleic Acid
3.
J Gen Virol ; 85(Pt 1): 231-240, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14718638

ABSTRACT

The coat protein (CP) of Alfalfa mosaic virus (AMV) is required to initiate infection by the viral tripartite RNA genome whereas infection by the tripartite Brome mosaic virus (BMV) genome is independent of CP. AMV CP stimulates translation of AMV RNA in vivo 50- to 100-fold. The 3' untranslated region (UTR) of the AMV subgenomic CP messenger RNA 4 contains at least two CP binding sites. A CP binding site in the 3'-terminal 112 nucleotides of RNA 4 was found to be required for efficient translation of the RNA whereas an upstream binding site was not. Binding of CP to the AMV 3' UTR induces a conformational change of the RNA but this change alone was not sufficient to stimulate translation. CP mutant R17A is unable to bind to the 3' UTR and translation in vivo of RNA 4 encoding this mutant occurs at undetectable levels. Replacement of the 3' UTR of this mutant RNA 4 by the 3' UTR of BMV RNA 4 restored translation of R17A-CP to wild-type levels. Apparently, the BMV 3' UTR stimulates translation independently of CP. AMV CP mutant N199 is defective in the formation of CP dimers and did not stimulate translation of RNA 4 in vivo although the mutant CP did bind to the 3' UTR. The finding that N199-CP does not promote AMV infection corroborates the notion that the requirement of CP in the inoculum reflects its role in translation of the viral RNAs.


Subject(s)
3' Untranslated Regions/genetics , Alfalfa mosaic virus/metabolism , Capsid Proteins/metabolism , Protein Biosynthesis , RNA, Viral/metabolism , 3' Untranslated Regions/chemistry , 3' Untranslated Regions/metabolism , Alfalfa mosaic virus/genetics , Animals , Base Sequence , Capsid Proteins/chemistry , Capsid Proteins/genetics , Dimerization , Molecular Sequence Data , Mutation , RNA, Viral/genetics , Rabbits , Reticulocytes/metabolism
4.
J Gen Virol ; 82(Pt 1): 25-28, 2001 Jan.
Article in English | MEDLINE | ID: mdl-11125154

ABSTRACT

RNAs 1 and 2 of the tripartite genome of Alfalfa mosaic virus (AMV) encode the two viral replicase subunits. Full-length DNA copies of RNAs 1 and 2 were used to transform tobacco plants (R12 lines). None of the transgenic lines showed resistance to AMV infection. In healthy R12 plants, the transcripts of the viral cDNAs were copied by the transgenic viral replicase into minus-strand RNAs but subsequent steps in replication were blocked. When the R12 plants were inoculated with AMV RNA 3, this block was lifted and the transgenic RNAs 1 and 2 were amplified by the transgenic replicase together with RNA 3. The transgenic expression of RNAs 1 and 2 largely circumvented the role of coat protein (CP) in the inoculum that is required for infection of nontransgenic plants. The results for the first time demonstrate the role of CP in AMV plus-strand RNA synthesis at the whole plant level.


Subject(s)
Alfalfa mosaic virus/physiology , Alfalfa mosaic virus/genetics , Blotting, Northern , Capsid/analysis , Capsid/genetics , Plants, Genetically Modified , Plants, Toxic , RNA, Viral/analysis , RNA-Dependent RNA Polymerase/metabolism , Nicotiana/virology , Transcription, Genetic , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL