Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 62(7): B195-B201, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-37132907

ABSTRACT

In thin film deposition processes, the lower limit of the deposition temperature is determined by the used coating technology and the duration of the coating process and is usually higher than room temperature. Hence, the processing of thermally sensitive materials and the adjustability of thin film morphology are limited. In consequence, for factual low-temperature deposition processes, an active cooling of the substrate is required. The effect of low substrate temperature on thin film properties during ion beam sputtering was investigated. The S i O 2 and T a 2 O 5 films grown at 0°C show a trend of lower optical losses and higher laser induced damage threshold (LIDT) compared to 100°C.

2.
NPJ Microgravity ; 9(1): 34, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37130899

ABSTRACT

Transitions from the liquid to the solid state of matter are omnipresent. They form a crucial step in the industrial solidification of metallic alloy melts and are greatly influenced by the thermophysical properties of the melt. Knowledge of the thermophysical properties of liquid metallic alloys is necessary in order to gain a tight control over the solidification pathway, and over the obtained material structure of the solid. Measurements of thermophysical properties on ground are often difficult, or even impossible, since liquids are strongly influenced by earth's gravity. Another problem is the reactivity of melts with container materials, especially at high temperature. Finally, deep undercooling, necessary to understand nucleus formation and equilibrium as well as non-equilibrium solidification, can only be achieved in a containerless environment. Containerless experiments in microgravity allow precise benchmark measurements of thermophysical properties. The electromagnetic levitator ISS-EML on the International Space Station (ISS) offers perfect conditions for such experiments. This way, data for process simulations is obtained, and a deeper understanding of nucleation, crystal growth, microstructural evolution, and other details of the transformation from liquid to solid can be gained. Here, we address the scientific questions in detail, show highlights of recent achievements, and give an outlook on future work.

3.
Nanoscale ; 9(13): 4383-4387, 2017 Mar 30.
Article in English | MEDLINE | ID: mdl-28116399

ABSTRACT

Here, we report the use of rare earth element-doped nanocrystals as probes for correlative cathodoluminescence electron microscopy (CCLEM) bioimaging. This first experimental demonstration shows potential for the simultaneous acquisition of luminescence and electron microscopy images with nanometric resolution in focused ion beam cut biological samples.


Subject(s)
Fluorides , Lanthanum , Microscopy, Electron, Scanning Transmission , Nanoparticles , A549 Cells , Humans
4.
Acta Crystallogr C ; 57(Pt 10): 1144-6, 2001 Oct.
Article in English | MEDLINE | ID: mdl-11600765

ABSTRACT

The new nickel(II) coordination polymer poly[diaquanickel(II)-mu-(pyrazine-2,3,5,6-tetracarboxylato)-tetraaquanickel(II)], [[[Ni(C(8)N(2)O(8))(H(2)O)(2)]Ni(H(2)O)(4)]](n), has been synthesized and characterized both spectroscopically and crystallographically, by X-ray powder diffraction analysis. In this two-dimensional coordination polymer, Ni(II) ions are bridged by pyrazine-2,3,5,6-tetracarboxylic acid, coordinating in a bis-bidentate manner, so forming one-dimensional polymeric chains. The chains are linked by a second Ni(II) ion, via an O atom of the coordinated carboxylate group, resulting in the formation of a two-dimensional layer-like polymer. The remaining coordination sites of the two independent octahedral Ni(II) ions are occupied by water molecules. The layers are connected via hydrogen bonds involving all six coordinated water molecules.

5.
Chemistry ; 6(19): 3575-85, 2000 Oct 02.
Article in English | MEDLINE | ID: mdl-11072823

ABSTRACT

Two tetradentate bispinene-bipyridine type ligands, each with six stereogenic carbon centers, were synthesized from (-)-alpha-pinene. Their ability to predetermine chiral configurations at metal centers was studied. The two diastereoisomers, L1 and L2, differ in their absolute configuration at the bridgehead position. These ligands form metal complexes with Ag(I), Pd(II), Zn(II), Cu(II), and Cd(II), with coordination numbers four, five, and six and with complete control of chirality at the metal centers. Using L1 rather than L2 leads to complexes of inverted absolute configuration at the metal centers. These diastereomeric coordination species can be obtained either as separate compounds or, in some cases, as solids containing them in a 1:1 ratio. Ligands L1 and L2 thus show that the pinene-bipyridines are versatile molecules for the formation of metal complexes with predetermined chirality. In all cases, absolute configurations were determined in the solid state by X-ray diffraction methods and in solution by CD spectroscopy. The sign of exciton couplets from the pi-pi* transitions always agrees with the expectations for a given local configuration at the metal center. The five-coordinate, inherently chiral species of Zn(II) and Cu(II) described in this article are the first examples of trigonal-bipyramidal metal complexes with predetermined absolute configuration containing topologically linear ligands.

6.
Inorg Chem ; 39(10): 2087-95, 2000 May 15.
Article in English | MEDLINE | ID: mdl-12526517

ABSTRACT

Mononuclear transition metal complexes of the type [M(2,6-NITpy)2](ClO4)2 x solvent (2,6-NITpy = 2,6-bis-(3'-oxide-1'-oxyl-4',4',5',5'-tetramethylimidazolin-2'-yl)pyridine; M = Ni (1), Co (2), Zn (3), Mn (4), Cu (5)) have been synthesized and characterized by single-crystal X-ray diffraction studies. Crystal data: 1, monoclinic, P2(1)/c, Z = 4, a = 20.946(2) A, b = 12.0633(2) A, c = 21.173(2) A, beta = 113.55(1) degrees; 2, monoclinic, P2(1)/c, Z = 4, a = 20.902(2) A, b = 12.0981(8) A, c = 21.215(2) A, beta = 113.130(9) degrees; 3, triclinic, P1, Z = 2, a = 11.410(1) A, b = 12.932(1) A, c = 21.609(2) A, alpha = 96.040(2) degrees, beta = 102.24(1) degrees, gamma = 114.98(1); 4, monoclinic, P2(1)/n, Z = 4, a = 11.5473(8) A, b = 19.212(1) A, c = 25.236(2) A, beta = 98.772(9) degrees; 5, triclinic, P1, Z = 2, a = 12.1604(9) A, b = 12.6961(9) A, c = 18.103(2) A, alpha = 84.191(8) degrees, beta = 73.392(8) degrees, gamma = 66.072(8). The two 2,6-NITpy biradicals behave as terdentate ligands and bind almost perpendicular to each other in meridional positions. In compounds 1-4, the pyridine rings are axially ligated and four different nitronyl nitroxide radicals bind to the metal center through their O(nitroxyl) atoms, forming the equatorial plane of a distorted octahedron. On the contrary, in the copper(II) complex (5), the two N(pyridyl) atoms are found in equatorial positions. Only two nitroxide groups are then bound to the copper(II) ion in the equatorial plane, the other two being axially ligated. The two axially bound nitronyl nitroxide radicals couple ferromagnetically to the copper center (JCu-rad(ax) = + 10 K), whereas a strong antiferromagnetic coupling between this metal ion and the equatorial nitroxide groups (JCu-rad(eq) = -460 K) is observed. The other complexes exhibit strong antiferromagnetic metal-radical interactions: JNi-rad = -240 K, for 1; JMn-rad = -120 K, for 4. Interestingly, the study of the diamagnetic zinc(II) compound (3) reveals a moderate intramolecular antiferromagnetic interaction between radicals coordinated to the same metal center (Jrad-rad = -27.7 K). This interaction is transmitted through space and is also present in the other complexes: Jrad-rad = -14 K, for 1; Jrad-rad = -10 K, for 4; Jrad-rad = -20.5 K, for 5. Antiferromagnetic intermolecular interactions are also present in all the complexes herein studied.

SELECTION OF CITATIONS
SEARCH DETAIL
...