Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22283593

ABSTRACT

Summary BackgroundBivalent mRNA-based COVID-19 vaccines encoding the ancestral and Omicron spike protein were developed as a countermeasure against antigenically distinct SARS-CoV-2 variants. We compared the (variant-specific) immunogenicity and reactogenicity of mRNA-based bivalent Omicron BA.1 vaccines in individuals who were primed with adenovirus- or mRNA-based vaccines. MethodsIn this open-label, multicenter, randomized, controlled trial, healthcare workers primed with Ad26.COV2.S or mRNA-based vaccines were boosted with mRNA-1273.214 or BNT162b2 OMI BA.1. The primary endpoint was the fold change in S1-specific IgG antibodies pre- and 28 days after booster vaccination. Secondary outcomes were fast response, (antibody levels on day 7), reactogenicity, neutralization of circulating variants and (cross-reactive) SARS-CoV-2-specific T-cell responses. FindingsNo effect of different priming regimens was observed on bivalent vaccination boosted S1-specific IgG antibodies. The largest increase in S1-specific IgG antibodies occurred between day 0 and 7 after bivalent booster. Neutralizing antibodies targeting the variants in the bivalent vaccine (ancestral SARS-CoV-2 and Omicron BA.1) were boosted. In addition, neutralizing antibodies against the circulating Omicron BA.5 variant increased after BA.1 bivalent booster. T-cell responses were boosted and retained reactivity with variants from the Omicron sub-lineage. InterpretationBivalent booster vaccination with mRNA-1273.214 or BNT162b2 OMI BA.1 resulted in a rapid recall of humoral and cellular immune responses independent of the initial priming regimen. Although no preferential boosting of variant-specific responses was observed, the induced antibodies and T-cells cross-reacted with Omicron BA.1 and BA.5. It remains crucial to monitor immunity at the population level, and simultaneously antigenic drift at the virus level, to determine the necessity (and timing) of COVID-19 booster vaccinations. FundingThe Netherlands Organization for Health Research and Development (ZonMw) grant agreement 10430072110001. Research in contextO_ST_ABSEvidence before this studyC_ST_ABSVaccination against coronavirus disease-2019 (COVID-19) initially provided high levels of protection from both infection and severe disease. However, the emergence of antigenically distinct variants resulted in frequent breakthrough infections, especially with the emergence of variants from the Omicron sub-lineages. The frequent mutations in the Spike protein, and specifically the receptor binding domain (RBD), resulted in the recommendation by the WHO advisory group to update vaccines with novel antigens. Bivalent mRNA-based vaccines, encoding the Spike protein from both the ancestral SARS-CoV-2 and Omicron BA.1 (and later on BA.5) were subsequently introduced. Initial small comparative studies have been released on the evaluation of these bivalent vaccines, but it is essential is to evaluate the immunogenicity and reactogenicity of the vaccines against the background of different priming regimens. Added value of this studyThe SWITCH ON trial evaluated the bivalent booster vaccines BNT162b2 OMI BA.1 and mRNA-1273.214 vaccine in a cohort of Dutch healthcare workers. Study participants were primed with either Ad26.COV2.S, mRNA-1273, or BNT162b2. The study investigated three important topics: (1) immunogenicity of Omicron BA.1 bivalent vaccines after Ad26.COV2.S- or mRNA-based vaccine priming, (2) rapid immunological recall responses, indicative of preserved humoral and cellular immunological memory, and (3) cross-reactivity with relevant variants after booster vaccination. Implication of all the available evidenceVaccination with the bivalent booster mRNA-1273.214 or BNT162b2 OMI BA.1 resulted in a rapid recall of humoral and cellular immune responses independent of the initial priming regimen. The largest fraction of (neutralizing) antibodies and virus-specific T-cells was recalled within 7 days post booster vaccination. Although no preferential boosting of variant-specific responses was observed, the induced antibodies and T-cells cross-reacted with Omicron BA.1, which was included in the vaccine, but also the more antigenically distinct BA.5. It remains crucial to monitor immunity at the population level, and simultaneously antigenic drift at the virus level, to determine the necessity (and timing) of COVID-19 booster vaccinations.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-22273602

ABSTRACT

ImportanceIn patients with hematologic malignancies, the immunogenicity of the standard 2-dose mRNA-1273 coronavirus disease 19 (COVID-19) vaccination schedule is often insufficient due to underlying disease and current or recent therapy. ObjectiveTo determine whether a 3rd mRNA-1273 vaccination raises antibody concentrations in immunocompromised hematology patients to levels obtained in healthy individuals after the standard 2-dose mRNA-1273 vaccination schedule. DesignProspective observational cohort study. SettingFour academic hospitals in the Netherlands. Participants584 evaluable immunocompromised hematology patients, all grouped in predefined cohorts spanning the spectrum of hematologic malignancies. ExposureOne additional vaccination with mRNA-1273 5 months after completion of the standard 2-dose mRNA-1273 vaccination schedule. Main Outcomes and MeasuresSerum IgG antibodies to spike subunit 1 (S1) antigens prior to and 4 weeks after each vaccination, and pseudovirus neutralization of wildtype, delta and omicron variants in a subgroup of patients. ResultsIn immunocompromised hematology patients, a 3rd mRNA-1273 vaccination led to median S1 IgG concentrations comparable to concentrations obtained by healthy individuals after the 2-dose mRNA-1273 schedule. The rise in S1 IgG concentration after the 3rd vaccination was most pronounced in patients with a recovering immune system, but potent responses were also observed in patients with persistent immunodeficiencies. Specifically, patients with myeloid malignancies or multiple myeloma, and recipients of autologous or allogeneic hematopoietic cell transplantation (HCT) reached median S1 IgG concentrations similar to those obtained by healthy individuals after a 2-dose schedule. Patients on or shortly after rituximab therapy, CD19-directed chimeric antigen receptor T cell therapy recipients, and chronic lymphocytic leukemia patients on ibrutinib were less or unresponsive to the 3rd vaccination. In the 27 patients who received cell therapy between the 2nd and 3rd vaccination, S1 antibodies were preserved, but a 3rd mRNA-1273 vaccination did not significantly enhance S1 IgG concentrations except for multiple myeloma patients receiving autologous HCT. A 3rd vaccination significantly improved neutralization capacity per antibody. Conclusions and RelevanceThe primary schedule for immunocompromised patients with hematologic malignancies should be supplemented with a delayed 3rd vaccination. B cell lymphoma patients and allogeneic HCT recipients need to be revaccinated after treatment or transplantation. Trial RegistrationEudraCT 2021-001072-41 Key pointsO_ST_ABSQuestionC_ST_ABSCan a 3rd mRNA-1273 vaccination improve COVID-19 antibody concentrations in immunocompromised hematology patients to levels similar to healthy adults after the standard 2-dose mRNA-1273 schedule? FindingsIn this prospective observational cohort study that included 584 immunocompromised hematology patients, a 3rd mRNA-1273 vaccination significantly improved SARS-CoV-2 antibody concentrations to levels not significantly different from those obtained by healthy individuals after the standard 2-dose mRNA-1273 vaccination schedule. Pseudovirus neutralization capacity per antibody of wild type virus and variants of concern also significantly improved. MeaningThe primary COVID-19 vaccination schedule for immunocompromised patients with hematologic malignancies should be supplemented with a delayed 3rd vaccination.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-22270494

ABSTRACT

BackgroundDuring the first two years of the COVID-19 pandemic, the circulation of seasonal influenza viruses was unprecedentedly low. This led to concerns that the lack of immune stimulation to influenza viruses combined with waning antibody titres could lead to increased susceptibility to influenza in subsequent seasons, resulting in larger and more severe epidemics. MethodsWe analyzed historical influenza virus epidemiological data from 2003-2019 to assess the historical frequency of near-absence of seasonal influenza virus circulation and its impact on the size and severity of subsequent epidemics. Additionally, we measured haemagglutination inhibition-based antibody titres against seasonal influenza viruses using longitudinal serum samples from 165 healthy adults, collected before and during the COVID-19 pandemic, and estimated how antibody titres against seasonal influenza waned during the first two years of the pandemic. FindingsLow country-level prevalence of influenza virus (sub)types over one or more years occurred frequently before the COVID-19 pandemic and had relatively small impacts on subsequent epidemic size and severity. Additionally, antibody titres against seasonal influenza viruses waned negligibly during the first two years of the pandemic. InterpretationThe commonly held notion that lulls in influenza virus circulation, as observed during the COVID-19 pandemic, will lead to larger and/or more severe subsequent epidemics might not be fully warranted, and it is likely that post-lull seasons will be similar in size and severity to pre-lull seasons. FundingEuropean Research Council, Netherlands Organization for Scientific Research, Royal Dutch Academy of Sciences, Public Health Service of Amsterdam. Research in contextO_ST_ABSEvidence before this studyC_ST_ABSDuring the first years of the COVID-19 pandemic, the incidence of seasonal influenza was unusually low, leading to widespread concerns of exceptionally large and/or severe influenza epidemics in the coming years. We searched PubMed and Google Scholar using a combination of search terms (i.e., "seasonal influenza", "SARS-CoV-2", "COVID-19", "low incidence", "waning rates", "immune protection") and critically considered published articles and preprints that studied or reviewed the low incidence of seasonal influenza viruses since the start of the COVID-19 pandemic and its potential impact on future seasonal influenza epidemics. We found a substantial body of work describing how influenza virus circulation was reduced during the COVID-19 pandemic, and a number of studies projecting the size of future epidemics, each positing that post-pandemic epidemics are likely to be larger than those observed pre-pandemic. However, it remains unclear to what extent the assumed relationship between accumulated susceptibility and subsequent epidemic size holds, and it remains unknown to what extent antibody levels have waned during the COVID-19 pandemic. Both are potentially crucial for accurate prediction of post-pandemic epidemic sizes. Added value of this studyWe find that the relationship between epidemic size and severity and the magnitude of circulation in the preceding season(s) is decidedly more complex than assumed, with the magnitude of influenza circulation in preceding seasons having only limited effects on subsequent epidemic size and severity. Rather, epidemic size and severity are dominated by season-specific effects unrelated to the magnitude of circulation in the preceding season(s). Similarly, we find that antibody levels waned only modestly during the COVID-19 pandemic. Implications of all the available evidenceThe lack of changes observed in the patterns of measured antibody titres against seasonal influenza viruses in adults and nearly two decades of epidemiological data suggest that post-pandemic epidemic sizes will likely be similar to those observed pre-pandemic, and challenge the commonly held notion that the widespread concern that the near-absence of seasonal influenza virus circulation during the COVID-19 pandemic, or potential future lulls, are likely to result in larger influenza epidemics in subsequent years.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-21264979

ABSTRACT

BackgroundIn face of the developing COVID-19 pandemic with a need for rapid and practical vaccination strategies, Ad26.COV2.S was approved as single shot immunization regimen. While effective against severe COVID-19, Ad26.COV2.S vaccination induces lower SARS-CoV-2-specific antibody levels compared to its mRNA-based counterparts. To support decision making on the need for booster vaccinations in Ad26.COV2.S-primed individuals, we assessed the immunogenicity and reactogenicity of homologous and heterologous booster vaccinations in Ad26.COV2.S-primed health care workers (HCWs). MethodsThe SWITCH trial is a single-(participant)-blinded, multi-center, randomized controlled trial among 434 HCWs who received a single Ad26.COV2.S vaccination. HCWs were randomized to no boost, Ad26.COV2.S boost, mRNA-1273 boost, or BNT162b2 boost. We assessed the level of SARS-CoV-2-specific binding antibodies, neutralizing antibodies against infectious virus, SARS-CoV-2-specific T-cell responses, and reactogenicity. ResultsHomologous and heterologous booster vaccinations resulted in an increase in SARS-CoV-2-specific binding antibodies, neutralizing antibodies and T-cell responses when compared to single Ad26.COV.2.S vaccination. In comparison with the homologous boost, the increase was significantly larger in heterologous regimens with the mRNA-based vaccines. mRNA-1273 boosting was most immunogenic, associated with higher reactogenicity. Only mild to moderate local and systemic reactions were observed on the first two days following booster. ConclusionsBoosting of Ad26.COV2.S-primed HCWs was well-tolerated and immunogenic. Strongest responses were detected after boosting with mRNA-based vaccines. Based on our data, efficacy on infection and transmission of boosters is expected. In addition to efficacy, decision making on boost vaccinations should include timing, target population, level of SARS CoV-2 circulation, and the global inequity in vaccine access. Trial registrationFunded by ZonMW (10430072110001); ClinicalTrials.gov number, NCT04927936.

5.
Preprint in English | bioRxiv | ID: ppbiorxiv-458667

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), an infectious disease characterized by strong induction of inflammatory cytokines, progressive lung inflammation and potentially multi-organ dysfunction. It remains unclear whether SARS-CoV-2 is sensed by pattern recognition receptors (PRRs) leading to immune activation. Several studies suggest that the Spike (S) protein of SARS-CoV-2 might interact with Toll-like receptor 4 (TLR4) and thereby activate immunity. Here we have investigated the role of TLR4 in SARS-CoV-2 infection and immunity. Neither exposure of isolated S protein, SARS-CoV-2 pseudovirus nor a primary SARS-CoV-2 isolate induced TLR4 activation in a TLR4-expressing cell line. Human monocyte-derived dendritic cells (DCs) express TLR4 but not ACE2, and DCs were not infected by a primary SARS-CoV-2 isolate. Notably, neither S protein nor the primary SARS-CoV-2 isolate induced DC maturation or cytokines, indicating that both S protein and SARS-CoV-2 virus particles do not trigger extracellular TLRs, including TLR4. Ectopic expression of ACE2 in DCs led to efficient infection by SARS-CoV-2. Strikingly, infection of ACE2-positive DCs induced type I IFN and cytokine responses, which was inhibited by antibodies against ACE2. These data strongly suggest that not extracellular TLRs but intracellular viral sensors are key players in sensing SARS-CoV-2. These data imply that SARS-CoV-2 escapes direct sensing by TLRs, which might underlie the lack of efficient immunity to SARS-CoV-2 early during infection. Author summaryThe immune system needs to recognize pathogens such as SARS-CoV-2 to initiate antiviral immunity. Dendritic cells (DCs) are crucial for inducing antiviral immunity and are therefore equipped with both extracellular and intracellular pattern recognition receptors to sense pathogens. However, it is unknown if and how SARS-CoV-2 activates DCs. Recent research suggests that SARS-CoV-2 is sensed by extracellular Toll-like receptor 4 (TLR4). We have previously shown that DCs do not express ACE2, and are therefore not infected by SARS-CoV-2. Here we show that DCs do not become activated by exposure to viral Spike proteins or SARS-CoV-2 virus particles. These findings suggest that TLR4 and other extracellular TLRs do not sense SARS-CoV-2. Next, we expressed ACE2 in DCs and SARS-CoV-2 efficiently infected these ACE2-positive DCs. Notably, infection of ACE2-positive DCs induced an antiviral immune response. Thus, our study suggests that infection of DCs is required for induction of immunity, and thus that intracellular viral sensors rather than extracellular TLRs are important in sensing SARS-CoV-2. Lack of sensing by extracellular TLRs might be an escape mechanism of SARS-CoV-2 and could contribute to the aberrant immune responses observed during COVID-19.

6.
Preprint in English | medRxiv | ID: ppmedrxiv-21256710

ABSTRACT

BackgroundFew longitudinal data on COVID-19 symptoms across the full spectrum of disease severity are available. We evaluated symptom onset, severity and recovery up to nine months after illness onset. MethodsThe RECoVERED Study is a prospective cohort study based in Amsterdam, the Netherlands. Participants aged>18 years were recruited following SARS-CoV-2 diagnosis via the local Public Health Service and from hospitals. Standardised symptom questionnaires were completed at recruitment, at one week and month after recruitment, and monthly thereafter. Clinical severity was defined according to WHO criteria. Kaplan-Meier methods were used to compare time from illness onset to symptom recovery, by clinical severity. We examined determinants of time to recovery using multivariable Cox proportional hazards models. ResultsBetween 11 May 2020 and 31 January 2021, 301 COVID-19 patients (167[55%] male) were recruited, of whom 99/301(32.9%) had mild, 140/301(46.5%) moderate, 30/301(10.0%) severe and 32/301(10.6%) critical disease. The proportion of symptomatic participants who reported at least one persistent symptom at 12 weeks after illness onset was greater in those with severe/critical disease (81.7%[95%CI=68.7-89.7%]) compared to those with mild or moderate disease (33.0%[95%CI=23.0-43.3%] and 63.8%[95%CI=54.8-71.5%]). Even at nine months after illness onset, almost half of all participants (42.1%[95%CI=35.6-48.5]) overall continued to report [≥]1 symptom. Recovery was slower in participants with BMI[≥]30kg/m2 (HR 0.51[95%CI=0.30-0.87]) compared to those with BMI<25kg/m2, after adjusting for age, sex and number of comorbidities. ConclusionsCOVID-19 symptoms persisted for nine months after illness onset, even in those with mild disease. Obesity was the most important determinant of speed of recovery from symptoms.

7.
Preprint in English | medRxiv | ID: ppmedrxiv-21257797

ABSTRACT

BackgroundThe urgent need for, but limited availability of, SARS-CoV-2 vaccines worldwide has led to widespread consideration of dose sparing strategies, particularly single vaccine dosing of individuals with prior SARS-CoV-2 infection. MethodsWe evaluated SARS-CoV-2 specific antibody responses following a single-dose of BNT162b2 (Pfizer-BioNTech) mRNA vaccine in 155 previously SARS-CoV-2-infected individuals participating in a population-based prospective cohort study of COVID-19 patients. Participants varied widely in age, comorbidities, COVID-19 severity and time since infection, ranging from 1 to 15 months. Serum antibody titers were determined at time of vaccination and one week after vaccination. Responses were compared to those in SARS-CoV-2-naive health care workers after two BNT162b2 mRNA vaccine doses. ResultsWithin one week of vaccination, IgG antibody levels to virus spike and RBD proteins increased 27 to 29-fold and neutralizing antibody titers increased 12-fold, exceeding titers of fully vaccinated SARS-CoV-2-naive controls (95% credible interval (CrI): 0.56 to 0.67 v. control 95% CrI: -0.16 to -0.02). Pre-vaccination neutralizing antibody titers had the largest positive mean effect size on titers following vaccination (95% CrI (0.16 to 0.45)). COVID-19 severity, the presence of comorbidities and the time interval between infection and vaccination had no discernible impact on vaccine response. ConclusionA single dose of BNT162b2 mRNA vaccine up to 15 months after SARS-CoV-2 infection provides neutralizing titers exceeding two vaccine doses in previously uninfected individuals. These findings support wide implementation of a single-dose mRNA vaccine strategy after prior SARS-CoV-2 infection.

8.
Preprint in English | bioRxiv | ID: ppbiorxiv-255810

ABSTRACT

The current pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and outbreaks of new variants highlight the need for preventive treatments. Here we identified heparan sulfate proteoglycans as attachment receptors for SARS-CoV-2. Notably, neutralizing antibodies against SARS-CoV-2 isolated from COVID-19 patients interfered with SARS-CoV-2 binding to heparan sulfate proteoglycans, which might be an additional mechanism of antibodies to neutralize infection. SARS-CoV-2 binding to and infection of epithelial cells was blocked by low molecular weight heparins (LMWH). Although dendritic cells (DCs) and mucosal Langerhans cells (LCs) were not infected by SARS-CoV-2, both DC subsets efficiently captured SARS-CoV-2 via heparan sulfate proteoglycans, and transmitted the virus to ACE2-positive cells. Moreover, human primary nasal cells were infected by SARS-CoV-2 and infection was blocked by pre-treatment with LMWH. These data strongly suggest that heparan sulfate proteoglycans are important attachment receptors facilitating infection and transmission, and support the use of LMWH as prophylaxis against SARS-CoV-2 infection.

9.
Preprint in English | bioRxiv | ID: ppbiorxiv-099507

ABSTRACT

IgG antibodies are crucial for protection against invading pathogens. A highly conserved N-linked glycan within the IgG-Fc-tail, essential for IgG function, shows variable composition in humans. Afucosylated IgG variants are already used in anti-cancer therapeutic antibodies for their elevated binding and killing activity through Fc receptors (Fc{gamma}RIIIa). Here, we report that afucosylated IgG which are of minor abundance in humans ([~]6% of total IgG) are specifically formed against surface epitopes of enveloped viruses after natural infections or immunization with attenuated viruses, while protein subunit immunization does not elicit this low fucose response. This can give beneficial strong responses, but can also go awry, resulting in a cytokine-storm and immune-mediated pathologies. In the case of COVID-19, the critically ill show aggravated afucosylated-IgG responses against the viral spike protein. In contrast, those clearing the infection unaided show higher fucosylation levels of the anti-spike protein IgG. Our findings indicate antibody glycosylation as a potential factor in inflammation and protection in enveloped virus infections including COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL
...