Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 160
Filter
1.
Microbes Infect ; : 105367, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38782181

ABSTRACT

Mycobacterium abscessus (Mab) infection can be deadly in patients with chronic lung diseases like cystic fibrosis (CF). In vitro and in vivo, Mab may adopt a smooth (S) or rough (R) morphotype, the latter linked to more severe disease conditions. In vitro studies revealed differences in pathogenicity and immune response to S and R morphotypes. We propose that in vivo both morphotypes exist and may transiently switch depending on the environment, having important pathogenic and immunologic consequences. This can be modeled by morphotypic S and R variants of Mab selected based on in vitro growth conditions. Here, we report the first analysis of early transcriptional events in mouse bone marrow derived macrophages (BMDMs) upon infection with media-selected interchangeable Mab-S and Mab-R morphotypes. The early transcriptional events after infection with both morphotypes showed considerable overlap of the pro-inflammatory genes that were differentially regulated compared to the uninfected macrophages. We also observed signature genes significantly differentially regulated in macrophages during infection of media-selected morphotypic Mab-S and Mab-R variants. In conclusion, media-selected Mab-S and Mab-R behave in a similar fashion to stable S and R types with respect to pathogenesis and immune response, serving as a useful model for environmentally influenced morphotype selection.

2.
Sci Rep ; 14(1): 10709, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38729980

ABSTRACT

Three years after SARS-CoV-2 emerged as a global infectious threat, the virus has become endemic. The neurological complications such as depression, anxiety, and other CNS complications after COVID-19 disease are increasing. The brain, and CSF have been shown as viral reservoirs for SARS-CoV-2, yielding a potential hypothesis for CNS effects. Thus, we investigated the CNS pharmacology of orally dosed nirmatrelvir/ritonavir (NMR/RTV). Using both an in vitro and an in vivo rodent model, we investigated CNS penetration and potential pharmacodynamic activity of NMR. Through pharmacokinetic modeling, we estimated the median CSF penetration of NMR to be low at 18.11% of plasma with very low accumulation in rodent brain tissue. Based on the multiples of the 90% maximal effective concentration (EC90) for SARS-CoV-2, NMR concentrations in the CSF and brain do not achieve an exposure level similar to that of plasma. A median of only 16% of all the predicted CSF concentrations in rats were > 3xEC90 (unadjusted for protein binding). This may have implications for viral persistence and neurologic post-acute sequelae of COVID-19 if increased NMR penetration in the CNS leads to decreased CNS viral loads and decreased CNS inflammation.


Subject(s)
Leukocytes, Mononuclear , Ritonavir , SARS-CoV-2 , Animals , Rats , Ritonavir/pharmacokinetics , SARS-CoV-2/drug effects , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/virology , Humans , Male , Brain/metabolism , Brain/virology , COVID-19 Drug Treatment , COVID-19/virology , COVID-19/cerebrospinal fluid , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Rats, Sprague-Dawley , Central Nervous System/metabolism , Central Nervous System/virology
3.
CPT Pharmacometrics Syst Pharmacol ; 13(5): 759-780, 2024 05.
Article in English | MEDLINE | ID: mdl-38622792

ABSTRACT

Inspired from quantum Monte Carlo, by sampling discrete and continuous variables at the same time using the Metropolis-Hastings algorithm, we present a novel, fast, and accurate high performance Monte Carlo Parametric Expectation Maximization (MCPEM) algorithm. We named it Randomized Parametric Expectation Maximization (RPEM). We compared RPEM with NONMEM's Importance Sampling Method (IMP), Monolix's Stochastic Approximation Expectation Maximization (SAEM), and Certara's Quasi-Random Parametric Expectation Maximization (QRPEM) for a realistic two-compartment voriconazole model with ordinary differential equations using simulated data. We show that RPEM is as fast and as accurate as the algorithms IMP, QRPEM, and SAEM for the voriconazole model in reconstructing the population parameters, for the normal and log-normal cases.


Subject(s)
Algorithms , Monte Carlo Method , Voriconazole , Humans , Computer Simulation , Antifungal Agents/administration & dosage
4.
Pharmaceutics ; 16(3)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38543252

ABSTRACT

Population pharmacokinetic (pop-PK) models constructed for model-informed precision dosing often have limited utility due to the low number of patients recruited. To augment such models, an approach is presented for generating fully artificial quasi-models which can be employed to make individual estimates of pharmacokinetic parameters. Based on 72 concentrations obtained in 12 patients, one- and two-compartment pop-PK models with or without creatinine clearance as a covariate were generated for piperacillin using the nonparametric adaptive grid algorithm. Thirty quasi-models were subsequently generated for each model type, and nonparametric maximum a posteriori probability Bayesian estimates were established for each patient. A significant difference in performance was found between one- and two-compartment models. Acceptable agreement was found between predicted and observed piperacillin concentrations, and between the estimates of the random-effect pharmacokinetic variables obtained using the so-called support points of the pop-PK models or the quasi-models as priors. The mean squared errors of the predictions made using the quasi-models were similar to, or even considerably lower than those obtained when employing the pop-PK models. Conclusion: fully artificial nonparametric quasi-models can efficiently augment pop-PK models containing few support points, to make individual pharmacokinetic estimates in the clinical setting.

5.
Clin Transl Sci ; 17(3): e13764, 2024 03.
Article in English | MEDLINE | ID: mdl-38476095

ABSTRACT

Colistin is known to cause nephrotoxicity due to its extensive reabsorption and accumulation in renal tubules. In vitro studies have identified the functional role of colistin transporters such as OCTN2, PEPT2, megalin, and P-glycoprotein. However, the role of these transporter gene variants in colistin-induced nephrotoxicity has not been studied. Utilizing targeted next-generation sequencing, we screened for genetic polymorphisms covering the colistin transporters (SLC15A1, SLC15A2, SLC22A5, LRP2, and ABCB1) in 42 critically ill patients who received colistimethate sodium. The genetic variants rs2257212 ((NM_021082.4):c.1048C>G) and rs13397109 ((NM_004525.3):C.7626C > T) were identified as being associated with an increased incidence of acute kidney injury (AKI) on Day 7. Colistin area under the curve (AUC) was predicted using a previously published pharmacokinetic model of colistin. Using logistic regression analysis, the predicted 24-h AUC of colistin was identified as an important contributor for increased odds of AKI on Day 7. Among 42 patients, 4 (9.5%) were identified as having high predisposition to colistin-induced AKI based on the presence of predisposing genetic variants. Determination of the presence of the abovementioned genetic variants and early therapeutic drug monitoring may reduce or prevent colistin-induced nephrotoxicity and facilitate dose optimization of colistimethate sodium.


Subject(s)
Acute Kidney Injury , Colistin , Humans , Colistin/adverse effects , Colistin/pharmacokinetics , Anti-Bacterial Agents , Acute Kidney Injury/chemically induced , Risk Factors , Genetic Predisposition to Disease , Retrospective Studies , Solute Carrier Family 22 Member 5
6.
Microbiol Spectr ; 12(2): e0322223, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38236037

ABSTRACT

Mycobacterium abscessus pulmonary disease is increasing in prevalence globally, particularly for individuals with cystic fibrosis. These infections are challenging to treat due to a high rate of resistance. Amikacin is critical to treatment, but the development of toxicity, amikacin resistance, and treatment failure are significant challenges. Amikacin has been characterized previously as peak-dependent and extended-interval dosing is commonly used. In our hollow fiber infection model of M. abscessus, amikacin exhibited time-dependent rather than the expected peak-dependent pharmacodynamics. Humanized amikacin exposures with more frequent, short-interval dosing (continuous infusion or every 12 hours) yielded improved microbiological response compared to extended-interval dosing (every 24 hours or 1-3 times per week). Short-interval dosing inhibited growth with a mean (SD) maximum Δlog10 colony forming units of -4.06 (0.52), significantly more than extended-interval dosing (P = 0.0013) every 24 hours, -2.40 (0.58), or 1-3 times per week, -2.39 (0.38). Growth recovery, an indicator of resistance emergence, occurred at 6.56 (0.70) days with short-interval dosing but was significantly earlier with extended-interval dosing (P = 0.0032) every 24 hours, 3.88 (0.85) days, and 1-3 times per week, 3.27 (1.72) days. Microbiological response correlated best with the pharmacodynamic index of %T > minimum inhibitory concentration (MIC), with an EC80 for growth inhibition of ~40%T > MIC. We used a previously published population model of amikacin to determine the probability of achieving 40%T > MIC and show that current dosing strategies are far below this target, which may partially explain why treatment failure remains so high for these infections. These data support a cautious approach to infrequent amikacin dosing for the treatment of M. abscessus.IMPORTANCEPulmonary disease caused by Mycobacterium abscessus complex (MABSC) is increasing worldwide, particularly in patients with cystic fibrosis. MABSC is challenging to treat due to high levels of antibiotic resistance. Treatment requires 2-4 antibiotics over more than 12 months and has a significant risk of toxicity but still fails to eradicate infection in over 50% of patients with cystic fibrosis. Antibiotic dosing strategies have been largely informed by common bacteria such as Pseudomonas aeruginosa. The "pharmacodynamic" effects of amikacin, a backbone of MABSC treatment, were thought to be related to maximum "peak" drug concentration, leading to daily or three times weekly dosing. However, we found that amikacin MABSC kill and growth recovery, an indicator of antibiotic resistance, are dependent on how long amikacin concentrations are above the minimum inhibitory concentration, not how high the peak concentration is. Therefore, we recommend a re-evaluation of amikacin dosing to determine if increased frequency can improve efficacy.


Subject(s)
Cystic Fibrosis , Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Humans , Amikacin , Cystic Fibrosis/microbiology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Mycobacterium Infections, Nontuberculous/microbiology
7.
JAC Antimicrob Resist ; 6(1): dlad157, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38259903

ABSTRACT

Objectives: Acute kidney injury (AKI) is a well-documented adverse effect observed with piperacillin/tazobactam in combination with vancomycin. The pharmacokinetics of these antibiotics when given in combination have not been previously evaluated. The purpose of this study was to compare the exposure of vancomycin + piperacillin/tazobactam in patients with and without AKI. Methods: Ninety adult patients, who received at least 72 h of vancomycin + piperacillin/tazobactam combination therapy and had available serum concentrations of vancomycin and piperacillin were included in the study. Nephrotoxicity was defined as a 1.5-fold increase in serum creatinine within 7 days from baseline. Median daily AUCs were calculated in those with nephrotoxicity (vancomycin + piperacillin/tazobactam 'N') versus those without nephrotoxicity (vancomycin + piperacillin/tazobactam 'WN') during the first 7 days of combination therapy. Results: The overall incidence of AKI in those receiving vancomycin + piperacillin/tazobactam was 20% (18/90). The median daily vancomycin AUCs did not differ between the vancomycin + piperacillin/tazobactam 'WN' and vancomycin + piperacillin/tazobactam 'N' groups. Although not statistically significant, the median daily vancomycin AUCs in the vancomycin + piperacillin/tazobactam 'N' group were numerically greater on Day 5 and trended downwards thereafter. For the piperacillin group, the median daily AUCs did not vary between groups, except on Day 7 where the vancomycin + piperacillin/tazobactam 'WN' group had statistically greater median piperacillin AUC than the vancomycin + piperacillin/tazobactam 'N' group (P = 0.046). Conclusions: Utilizing serum creatinine-defined AKI, our study did not find any significant differences in vancomycin and piperacillin/tazobactam exposure between the groups with and without nephrotoxicity. These data indicate that vancomycin + piperacillin/tazobactam should not be avoided due to the risk of overexposure; instead, clinicians should continue to use these therapies cautiously.

9.
J Pharmacokinet Pharmacodyn ; 51(1): 5-31, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37573528

ABSTRACT

The current demand for pharmacometricians outmatches the supply provided by academic institutions and considerable investments are made to develop the competencies of these scientists on-the-job. Even with the observed increase in academic programs related to pharmacometrics, this need is unlikely to change in the foreseeable future, as the demand and scope of pharmacometrics applications keep expanding. Further, the field of pharmacometrics is changing. The field largely started when Lewis Sheiner and Stuart Beal published their seminal papers on population pharmacokinetics in the late 1970's and early 1980's and has continued to grow in impact and use since its inception. Physiological-based pharmacokinetics and systems pharmacology have grown rapidly in scope and impact in the last decade and machine learning is just on the horizon. While all these methodologies are categorized as pharmacometrics, no one person can be an expert in everything. So how do you train future pharmacometricians? Leading experts in academia, industry, contract research organizations, clinical medicine, and regulatory gave their opinions on how to best train future pharmacometricians. Their opinions were collected and synthesized to create some general recommendations.


Subject(s)
Pharmacology , Humans , Pharmacokinetics , Career Choice
10.
Antimicrob Agents Chemother ; 67(12): e0072723, 2023 12 14.
Article in English | MEDLINE | ID: mdl-37975660

ABSTRACT

It is unclear whether plasma is a reliable surrogate for target attainment in the epithelial lining fluid (ELF). The objective of this study was to characterize meropenem target attainment in plasma and ELF using prospective samples. The first 24-hour T>MIC was evaluated vs 1xMIC and 4xMIC targets at the patient (i.e., fixed MIC of 2 mg/L) and population [i.e., cumulative fraction of response (CFR) according to EUCAST MIC distributions] levels for both plasma and ELF. Among 65 patients receiving ≥24 hours of treatment, 40% of patients failed to achieve >50% T>4xMIC in plasma and ELF, and 30% of patients who achieved >50% T>4xMIC in plasma had <50% T>4xMIC in ELF. At 1xMIC and 4xMIC targets, 3% and 25% of patients with >95% T>MIC in plasma had <50% T>MIC in ELF, respectively. Those with a CRCL >115 mL/min were less likely to achieve >50%T>4xMIC in ELF (P < 0.025). In the population, CFR for Escherichia coli at 1xMIC and 4xMIC was >97%. For Pseudomonas aeruginosa, CFR was ≥90% in plasma and ranged 80%-85% in ELF at 1xMIC when a loading dose was applied. CFR was reduced in plasma (range: 75%-81%) and ELF (range: 44%-60%) in the absence of a loading dose at 1xMIC. At 4xMIC, CFR for P. aeruginosa was 60%-86% with a loading dose and 18%-62% without a loading dose. We found that plasma overestimated ELF target attainment inup to 30% of meropenem-treated patients, CRCL >115 mL/min decreased target attainment in ELF, and loading doses increased CFR in the population.


Subject(s)
Anti-Bacterial Agents , Pseudomonas Infections , Humans , Meropenem/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Prospective Studies , Pseudomonas Infections/drug therapy , Plasma , Microbial Sensitivity Tests
11.
J Pediatric Infect Dis Soc ; 12(6): 334-341, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37389891

ABSTRACT

BACKGROUND: Therapies to prevent recurrence of Clostridioides difficile infection (CDI) in pediatric patients are needed. Bezlotoxumab is a fully human monoclonal antibody approved for prevention of recurrent CDI in adults. We assessed the pharmacokinetics, safety, tolerability, and efficacy of bezlotoxumab in pediatric patients. METHODS: MODIFY III was a multicenter, double-blind, placebo-controlled study of bezlotoxumab in children (1 to <18 years) receiving antibacterial treatment for CDI. Participants were randomized 3:1 to receive a single infusion of bezlotoxumab (10 mg/kg) or placebo and were stratified by age at randomization (cohort 1: 12 to <18 years, cohort 2: 1 to <12 years). The primary objective was to characterize bezlotoxumab pharmacokinetics to support dose selection for pediatric patients; the primary endpoint was the area under the bezlotoxumab serum concentration-time curve (AUC0-inf). Safety, tolerability, and efficacy were monitored for 12 weeks post-infusion. RESULTS: A total of 148 participants were randomized and 143 were treated: 107 with bezlotoxumab and 36 with placebo (cohort 1 n = 60, cohort 2 n = 83; median age 9.0 years); 52.4% of participants were male and 80.4% were white. Geometric mean ratios (90% CI) for bezlotoxumab AUC0-inf were 1.06 (0.95, 1.18) and 0.82 (0.75, 0.89) h * µg/mL for cohorts 1 and 2, respectively. Bezlotoxumab 10 mg/kg was generally well-tolerated with an adverse event profile similar to placebo, including no treatment discontinuations due to adverse events. CDI recurrence was low and comparable for bezlotoxumab (11.2%) and placebo (14.7%). CONCLUSIONS: The results of this study support the bezlotoxumab dose of 10 mg/kg for pediatric patients. TRIAL REGISTRATION: NCT03182907 at ClinicalTrials.gov.


Subject(s)
Anti-Bacterial Agents , Clostridium Infections , Adult , Humans , Child , Male , Female , Double-Blind Method , Anti-Bacterial Agents/therapeutic use , Antibodies, Monoclonal/therapeutic use , Clostridium Infections/drug therapy
12.
Pharmaceutics ; 15(5)2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37242578

ABSTRACT

Area under the curve (AUC)-directed vancomycin therapy is recommended, but Bayesian AUC estimation in critically ill children is difficult due to inadequate methods for estimating kidney function. We prospectively enrolled 50 critically ill children receiving IV vancomycin for suspected infection and divided them into model training (n = 30) and testing (n = 20) groups. We performed nonparametric population PK modeling in the training group using Pmetrics, evaluating novel urinary and plasma kidney biomarkers as covariates on vancomycin clearance. In this group, a two-compartment model best described the data. During covariate testing, cystatin C-based estimated glomerular filtration rate (eGFR) and urinary neutrophil gelatinase-associated lipocalin (NGAL; full model) improved model likelihood when included as covariates on clearance. We then used multiple-model optimization to define the optimal sampling times to estimate AUC24 for each subject in the model testing group and compared the Bayesian posterior AUC24 to AUC24 calculated using noncompartmental analysis from all measured concentrations for each subject. Our full model provided accurate and precise estimates of vancomycin AUC (bias 2.3%, imprecision 6.2%). However, AUC prediction was similar when using reduced models with only cystatin C-based eGFR (bias 1.8%, imprecision 7.0%) or creatinine-based eGFR (bias -2.4%, imprecision 6.2%) as covariates on clearance. All three model(s) facilitated accurate and precise estimation of vancomycin AUC in critically ill children.

13.
Clin Cancer Res ; 29(13): 2410-2418, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37134194

ABSTRACT

PURPOSE: Cisplatin-induced hearing loss (CIHL) is common and permanent. As compared with earlier otoprotectants, we hypothesized N-acetylcysteine (NAC) offers potential for stronger otoprotection through stimulation of glutathione (GSH) production. This study tested the optimal dose, safety, and efficacy of NAC to prevent CIHL. PATIENTS AND METHODS: In this nonrandomized, controlled phase Ia/Ib trial, children and adolescents newly diagnosed with nonmetastatic, cisplatin-treated tumors received NAC intravenously 4 hours post-cisplatin. The trial performed dose-escalation across three dose levels to establish a safe dose that exceeded the targeted peak serum NAC concentration of 1.5 mmol/L (as identified from preclinical models). Patients with metastatic disease or who were otherwise ineligible were enrolled in an observation-only/control arm. To evaluate efficacy, serial age-appropriate audiology assessments were performed. Integrated biology examined genes involved in GSH metabolism and post-NAC GSH concentrations. RESULTS: Of 52 patients enrolled, 24 received NAC and 28 were in the control arm. The maximum tolerated dose was not reached; analysis of peak NAC concentration identified 450 mg/kg as the recommended phase II dose (RP2D). Infusion-related reactions were common. No severe adverse events occurred. Compared with the control arm, NAC decreased likelihood of CIHL at the end of cisplatin therapy [OR, 0.13; 95% confidence interval (CI), 0.021-0.847; P = 0.033] and recommendations for hearing intervention at end of study (OR, 0.082; 95% CI, 0.011-0.60; P = 0.014). NAC increased GSH; GSTP1 influenced risk for CIHL and NAC otoprotection. CONCLUSIONS: NAC was safe at the RP2D, with strong evidence for efficacy to prevent CIHL, warranting further development as a next-generation otoprotectant.


Subject(s)
Hearing Loss , Neoplasms , Adolescent , Humans , Child , Cisplatin/adverse effects , Acetylcysteine/therapeutic use , Acetylcysteine/adverse effects , Hearing Loss/chemically induced , Hearing Loss/prevention & control , Neoplasms/drug therapy , Neoplasms/chemically induced , Administration, Intravenous
14.
J Pediatr ; 259: 113419, 2023 08.
Article in English | MEDLINE | ID: mdl-37044372

ABSTRACT

OBJECTIVES: To evaluate implementation of rifamycin-based regimens (RBR) for pediatric tuberculosis infection (TBI) treatment among 3 provider settings in a high-incidence county. STUDY DESIGN: A multicenter, retrospective observational study was performed across 3 sites in Los Angeles County: an academic center (AC), a general pediatrics federally qualified health center (FQHC), and department of public health (DPH) tuberculosis clinics. Patients initiated on TBI treatment age 1 months to 17 years between 2018 and 2020 were included. RBRs were defined as regimens: 3 months of weekly rifapentine and isoniazid, 4 months of daily rifampin, and 3 months of daily isoniazid and rifampin. RESULTS: We included 424 patients: 51 from AC, 327 from DPH, and 46 from FQHC. RBR use nearly doubled during the study period (from 43% in 2018 to 82% in 2020; P < .001). FQHC had the shortest time to chest radiograph and treatment initiation; however, AC and DPH were 4 times as likely to prescribe an RBR compared to FQHC (95% CI, 2.1-7.8). AC and DPH had similar completion rates (74%) and were 2.6 times as likely to complete treatment compared to FQHC (95% CI, 1.4-4.9). CONCLUSIONS: The use of RBRs for pediatric TBI varies significantly by clinical setting but is improving over time. Strategies are needed to improve RBR uptake, standardize care, and increase treatment completion, particularly among general pediatricians.


Subject(s)
Latent Tuberculosis , Pediatrics , Tuberculosis , Humans , Child , Infant , Rifampin/therapeutic use , Isoniazid/therapeutic use , Antitubercular Agents/therapeutic use , Tuberculosis/drug therapy , Drug Therapy, Combination
15.
J Clin Pharmacol ; 63(1): 57-65, 2023 01.
Article in English | MEDLINE | ID: mdl-35924629

ABSTRACT

Adequate colistin exposure is important for microbiological clearance. This study was performed in critically ill patients >18 years old to develop a simplified nonparametric pharmacokinetic (PK) model of colistin for routine clinical use and to determine the role of dose optimization. The Non-Parametric Adaptive Grid algorithm within the Pmetrics software package for R was used to develop a PK model from 47 patients, and external validation of the final model was performed in 13 patients. A 1-compartment multiplicative gamma error model with 0-order input and first-order elimination of colistin was developed with creatinine clearance and serum albumin as covariates on elimination rate constant. An R2 for observed vs individual predicted colistin concentrations of 0.92 was obtained in the validation cohort. High interindividual variability in colistin steady-state area under the plasma concentration-time curve (AUC) from from 120 hours to 144 hours (coefficient of variation = 80.1%) and a high interoccasion variability (median coefficient of variation of AUC from time 0 to hours predicted every 8 hours for initial 96 hours after starting colistin = 23.8) was predicted in patients who received this antibiotic for a period of over 152 hours (n = 22). With the model-suggested dose regimen, only 20% of simulated profiles achieved AUC from time 0 to 24 hours in the range of 50 to 60 mg â€¢ h/L due to high variability in population PK. In this group of patients, steady-state colistin concentrations were predicted to be achieved >96 hours after initiation of colistimethate sodium. This study advocates the need for early and repeated therapeutic drug monitoring and dose optimization in critically ill patients to achieve adequate therapeutic concentration of colistin.


Subject(s)
Colistin , Critical Illness , Humans , Adolescent , Colistin/therapeutic use , Colistin/pharmacokinetics , Drug Monitoring , Anti-Bacterial Agents/pharmacokinetics
16.
Br J Clin Pharmacol ; 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36482842

ABSTRACT

Patients are often switched between generic formulations of the same drug, but in some cases generic interchangeability is questioned. For generic drugs to be approved, bioequivalence with the innovator drug should be demonstrated, but evidence of bioequivalence is not required in the intended patient population or relative to other approved generics. AIM: We aim to identify pathophysiological pharmacokinetic subpopulations for whom there is a difference in comparative bioavailability compared to a healthy population. METHODS: We used simulated exposures from a nonparametric model of multiple generics and the originator gabapentin. Exposure was simulated for virtual populations with pharmacokinetic characteristics beyond those of healthy subjects with regard to rate of absorption, volume of distribution and reduced renal function. Virtual parallel design bioequivalence studies were performed using a random sample of 24 simulated subjects, with standard acceptance criteria. RESULTS: Results indicated increased pharmacokinetic variability for patient populations with a lower rate of absorption or a reduced renal function, but no change in the average comparable bioavailability ratio. This increased variability results in a reduced likelihood of demonstrating bioequivalence. Observations were similar for comparisons between all different formulations, as well as between subjects who received the identical formulation in a repeated fashion. No relevant effect was observed for simulations with increased volume of distribution. CONCLUSION: Our simulations indicate that the reduced likelihood of demonstrating bioequivalence for subjects with altered pharmacokinetics is not influenced by a formulation switch, nor does the average comparable bioavailability ratio change, therefore these results support generic interchangeability and current approval requirements for generics.

17.
J Antimicrob Chemother ; 77(12): 3349-3357, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36177766

ABSTRACT

BACKGROUND: Annual mortality from neonatal sepsis is an estimated 430 000-680 000 infants globally, most of which occur in low- and middle-income countries (LMICs). The WHO currently recommends a narrow-spectrum ß-lactam (e.g. ampicillin) and gentamicin as first-line empirical therapy. However, available epidemiological data demonstrate high rates of resistance to both agents. Alternative empirical regimens are needed. Flomoxef and amikacin are two off-patent antibiotics with potential for use in this setting. OBJECTIVES: To assess the pharmacodynamics of flomoxef and amikacin in combination. METHODS: The pharmacodynamic interaction of flomoxef and amikacin was assessed in chequerboard assays and a 16-arm dose-ranged hollow-fibre infection model (HFIM) experiment. The combination was further assessed in HFIM experiments mimicking neonatal plasma exposures of clinically relevant doses of both drugs against five Enterobacterales isolates with a range of flomoxef/amikacin MICs. RESULTS: Flomoxef and amikacin in combination were synergistic in bacterial killing in both assays and prevention of emergence of amikacin resistance in the HFIM. In the HFIM assessing neonatal-like drug exposures, the combination killed 3/5 strains to sterility, (including 2/5 that monotherapy with either drug failed to kill) and failed to kill the 2/5 strains with flomoxef MICs of 32 mg/L. CONCLUSIONS: We conclude that the combination of flomoxef and amikacin is synergistic and is a potentially clinically effective regimen for the empirical treatment of neonatal sepsis in LMIC settings and is therefore suitable for further assessment in a clinical trial.


Subject(s)
Amikacin , Neonatal Sepsis , Infant , Infant, Newborn , Humans , Amikacin/pharmacology , Amikacin/therapeutic use , Neonatal Sepsis/drug therapy , Cephalosporins , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Delivery of Health Care
18.
Antimicrob Agents Chemother ; 66(10): e0069522, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36165631

ABSTRACT

Mycobacterium tuberculosis (Mtb) exists in various metabolic states, including a nonreplicating persister (NRP) phenotype which may affect response to therapy. We have adopted a model-informed strategy to accelerate discovery of effective Mtb treatment regimens and previously found pretomanid (PMD), moxifloxacin (MXF), and bedaquiline (BDQ) to readily kill logarithmic- and acid-phase Mtb. Here, we studied multiple concentrations of each drug in flask-based, time-kill studies against NRP Mtb in single-, two- and three-drug combinations, including the active M2 metabolite of BDQ. We used nonparametric population algorithms in the Pmetrics package for R to model the data and to simulate the 95% confidence interval of bacterial population decline due to the two-drug combination regimen of PMD + MXF and compared this to observed declines with three-drug regimens. PMD + MXF at concentrations equivalent to average or peak human concentrations effectively eradicated Mtb. Unlike other states for Mtb, we observed no sustained emergence of less susceptible isolates for any regimen. The addition of BDQ as a third drug significantly (P < 0.05) shortened time to total bacterial suppression by 3 days compared to the two-drug regimen, similar to our findings for Mtb in logarithmic or acid growth phases.


Subject(s)
Mycobacterium tuberculosis , Animals , Humans , Antitubercular Agents/pharmacology , Moxifloxacin/pharmacology , Drug Combinations , Phenotype
19.
J Clin Med ; 11(14)2022 Jul 16.
Article in English | MEDLINE | ID: mdl-35887904

ABSTRACT

Severe community-acquired pneumonia (CAP) is a condition that frequently requires intensive care and, eventually, can cause to death. Piperacillin/tazobactam antibiotic therapy is employed as an empiric intravenous regimen, in many cases supplemented with intravenous bolus hydrocortisone treatment. The individual and condition-dependent pharmacokinetic properties of these drugs may lead to therapeutic failure. The impact of systemic inflammation, as well as of hydrocortisone on the altered pharmacokinetics of piperacillin is largely unknown. The protocol of a clinical study aimed at the characterization of the pharmacokinetics of piperacillin and tazobactam and its association with the concentrations of inflammatory markers and adrenal steroids during CAP therapy will be investigated in up to 40 critically ill patients. The serum concentrations of piperacillin and tazobactam, cortisol, cortisone, corticosterone and 11-deoxycortisol and interleukin-6 levels, as well as routine clinical chemistry and hematology parameters will be monitored from the beginning of treatment for up to five days. Nonparametric population pharmacokinetic modeling and Monte-Carlo simulations will be performed to make estimates of the pharmacokinetics of piperacillin and tazobactam and the probability of pharmacokinetic-pharmacodynamic target attainment. The observed individual characteristics and changes will be correlated with clinical and laboratory findings. The protocol of the observational study will be designed following the STROBE guideline.

20.
J Antimicrob Chemother ; 77(11): 2956-2959, 2022 10 28.
Article in English | MEDLINE | ID: mdl-35869779

ABSTRACT

OBJECTIVES: Critical illness reduces ß-lactam pharmacokinetic/pharmacodynamic (PK/PD) attainment. We sought to quantify PK/PD attainment in patients with hospital-acquired pneumonia. METHODS: Meropenem plasma PK data (n = 70 patients) were modelled, PK/PD attainment rates were calculated for empirical and definitive targets, and between-patient variability was quantified [as a coefficient of variation (CV%)]. RESULTS: Attainment of 100% T>4×MIC was variable for both empirical (CV% = 92) and directed (CV% = 33%) treatment. CONCLUSIONS: Individualization is required to achieve suggested PK/PD targets in critically ill patients.


Subject(s)
Anti-Bacterial Agents , Pneumonia , Humans , Meropenem/therapeutic use , Meropenem/pharmacology , Microbial Sensitivity Tests , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Prospective Studies , Critical Illness/therapy , Intensive Care Units , Pneumonia/drug therapy , Hospitals
SELECTION OF CITATIONS
SEARCH DETAIL
...