Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(11): e22236, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38058641

ABSTRACT

This review article focuses on the multifaceted roles of pectin in cancer management, namely as an oncotherapeutic delivery vehicle and a pharmacological agent. Over the past decades, the potential of pectin as a novel therapeutical agent for the prevention and/or management of cancer has gained increasing interest. Pectin has been found to modulate different mechanisms involved in the onset and progression of carcinogenesis, such as galectin-3 inhibition, caspase-3-induced apoptosis, and autophagy. Elucidating the structure-activity relationship provides insight into the relationship between the structure of pectin and different mechanism/s. The bioactivity of pectin, with respect to its structure, was critically discussed to give a better insight of the relationship between the structure of the extracted pectin and the observed bioactive effects. The rhamnogalacturonan I part of the pectin chain was found to bind to galectin-3, associated with several cancer hallmarks. The anti-inflammatory and antioxidant potential of pectin were also described. The roles of pectin as a treatment enhancer and a drug delivery vehicle for oncotherapeutics were critically defined. The scientific findings presented in this paper are expected to highlight the potential and role of pectin recovered from various plant sources in preventing and managing cancer.

2.
Molecules ; 28(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36771106

ABSTRACT

Cancer is responsible for lifelong disability and decreased quality of life. Cancer-associated changes in metabolism, in particular carbohydrate, lipid, and protein, offer a new paradigm of metabolic hits. Hence, targeting the latter, as well as related cross-linked signalling pathways, can reverse the malignant phenotype of transformed cells. The systemic toxicity and pharmacokinetic limitations of existing drugs prompt the discovery of multi-targeted and safe compounds from natural products. Mushrooms possess biological activities relevant to disease-fighting and to the prevention of cancer. They have a long-standing tradition of use in ethnomedicine and have been included as an adjunct therapy during and after oncological care. Mushroom-derived compounds have also been reported to target the key signature of cancer cells in in vitro and in vivo studies. The identification of metabolic pathways whose inhibition selectively affects cancer cells appears as an interesting approach to halting cell proliferation. For instance, panepoxydone exerted protective mechanisms against breast cancer initiation and progression by suppressing lactate dehydrogenase A expression levels and reinducing lactate dehydrogenase B expression levels. This further led to the accumulation of pyruvate, the activation of the electron transport chain, and increased levels of reactive oxygen species, which eventually triggered mitochondrial apoptosis in the breast cancer cells. Furthermore, the inhibition of hexokinase 2 by neoalbaconol induced selective cytotoxicity against nasopharyngeal carcinoma cell lines, and these effects were also observed in mouse models. Finally, GL22 inhibited hepatic tumour growth by downregulating the mRNA levels of fatty acid-binding proteins and blocking fatty acid transport and impairing cardiolipin biosynthesis. The present review, therefore, will highlight how the metabolites isolated from mushrooms can target potential biomarkers in metabolic reprogramming.


Subject(s)
Agaricales , Neoplasms , Animals , Mice , Agaricales/chemistry , Apoptosis , Fatty Acid-Binding Proteins , Neoplasms/drug therapy , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL
...