Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Bioorg Chem ; 99: 103787, 2020 06.
Article in English | MEDLINE | ID: mdl-32251947

ABSTRACT

Leishmaniasis and microbial infections are two of the major contributors to global mortality and morbidity rates. Hence, development of novel, effective and safer antileishmanial and antimicrobial agents having reduced side effects are major priority for researchers. Two series of N-substituted indole derivatives i.e. N-substituted indole based chalcones (12a-g) and N-substituted indole based hydrazide-hydrazones (18a-g, 19a-f, 21 a-g) were synthesized. The synthesized compounds were characterized by 1H NMR, 13C NMR, Mass and FT-IR spectral data. Further these derivatives were evaluated for their antimicrobial potential against Escherichia coli, Bacillus subtilis, Pseudomonas putida and Candida viswanathii, and antileishmanial potential against promastigotes of Leishmania donovani. Compounds 18b, 18d and 19d exhibited significant activity with an IC50 of 0.19 ± 0.03 µM, 0.14 ± 0.02 µM and 0.16 ± 0.06 µM against B. subtilis which was comparable to chloramphenicol (IC50 of 0.25 ± 0.03 µM). Compounds 12b and 12c exhibited an IC50 of 24.2 ± 3.5 µM and 21.5 ± 2.1 µM in the antileishmanial assay. Binding interactions of indole based hydrazide-hydrazones were studied with nitric oxide synthase in silico in order to understand the structural features responsible for activity.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Antiprotozoal Agents/pharmacology , Indoles/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Bacillus subtilis/drug effects , Candida/drug effects , Dose-Response Relationship, Drug , Escherichia coli/drug effects , Indoles/chemical synthesis , Indoles/chemistry , Leishmania donovani/drug effects , Microbial Sensitivity Tests , Molecular Structure , Parasitic Sensitivity Tests , Pseudomonas putida/drug effects , Structure-Activity Relationship
2.
Int J Biol Macromol ; 119: 320-334, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30031075

ABSTRACT

Pyridoxal kinase (PdxK, EC 2.7.1.35) is an important enzyme of vitamin B6 salvage pathway which is required for phosphorylation of B6 vitamers. In the present study, pyridoxal kinase (pdxK) gene from Leishmania donovani (LdPdxK) was cloned and a 33 kDa protein was expressed and kinetically characterized. Site-directed mutagenesis was performed to determine the functional significance of conserved GXGD motif. Mutation of Thr229 to Ala did not affect the catalytic function of LdPdxK however Gly228, Gly230 and Asp231 were found to be indispensible for enzyme activity. To determine the role of LdPdxK in Leishmania promastigotes, LdPdxK overexpressing parasites were generated by episomal expression of the enzyme. The overexpression studies revealed the role of this enzyme in growth and infection of the parasite. In silico analysis of the human and parasite PdxK structure revealed significant differences in the active site region thus highlighting its potential as an antileishmanial drug target. Homology model of LdPdxK was built and was subjected to molecular dynamics simulations. Based on the above information, a pharmacophore was developed and shape based virtual screening was performed to identify potential and selective inhibitors against this essential enzyme. The current data suggests that LdPdxK could be a promising antileishmanial drug target.


Subject(s)
Pyridoxal Kinase/chemistry , Pyridoxal Kinase/metabolism , Amino Acid Motifs , Amino Acid Sequence , Catalytic Domain , Enzyme Activation , Gene Expression , Humans , Leishmania donovani/classification , Leishmania donovani/genetics , Leishmania donovani/metabolism , Metabolic Networks and Pathways , Models, Molecular , Mutation , Phylogeny , Protein Conformation , Pyridoxal Kinase/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Analysis, DNA , Vitamin B 6/chemistry , Vitamin B 6/metabolism
3.
Parasitol Int ; 66(1): 992-1002, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27825908

ABSTRACT

Leishmaniasis, a neglected tropical disease is endemic in 98 countries and >350 million people are at risk of getting the infection. The existing chemotherapy of Leishmaniasis is limited due to adverse effects, resistance to existing drugs and increasing cases of HIV-Leishmaniasis co-infection. Hence, there is a need to identify novel metabolic pathways for design of new chemical entities. Acetyl-CoA synthetase (AceCS) is an enzyme of acetate metabolic pathway whose functions are unknown in Leishmania parasite. AceCS from Leishmania donovani (LdAceCS) is significantly different from human host to be explored as a potential drug candidate to develop parasite specific inhibitors. To dissect the functions of LdAceCS in Leishmania promastigotes, two approaches were followed. LdAceCS overexpressing parasites were generated by episomal expression of LdAceCS in promastigotes and single knockout (SKO) cell lines of LdAceCS were generated by targeted gene disruption. An insight into the phenotypic changes undergone by the overexpressors revealed an increase in LdAceCS activity, total lipid content, infectivity and ergosterol levels by ~2.2, 2.2, 1.65 and 3 fold respectively with respect to wild type. Similarly SKO transgenic parasites exhibited ~2.5, 3, 1.5 and 3 fold decrease in activity, total lipid content, infectivity and ergosterol respectively. Repeated attempts to generate null mutants failed thus indicating that LdAceCS is essential for the parasite and can be selectively targeted to combat Leishmania infection. The present study demonstrates that LdAceCS is important for in vitro macrophage infection and is also essential for biosynthesis of total lipids and ergosterol.


Subject(s)
Acetate-CoA Ligase/genetics , Acetate-CoA Ligase/metabolism , Adenosine Monophosphate/metabolism , Gene Silencing , Leishmania donovani/enzymology , Cell Line , Ergosterol/metabolism , Gene Expression , Gene Knockout Techniques , Humans , Leishmania donovani/genetics , Leishmania donovani/physiology , Lipids/biosynthesis , Macrophages/parasitology , Mutation , Phenotype
4.
Mycobiology ; : 35-41, 2012.
Article in English | WPRIM (Western Pacific) | ID: wpr-729359

ABSTRACT

A repeated batch fermentation system was used to produce ethanol using Saccharomyces cerevisiae strain (NCIM 3640) immobilized on sugarcane (Saccharum officinarum L.) pieces. For comparison free cells were also used to produce ethanol by repeated batch fermentation. Scanning electron microscopy evidently showed that cell immobilization resulted in firm adsorption of the yeast cells within subsurface cavities, capillary flow through the vessels of the vascular bundle structure, and attachment of the yeast to the surface of the sugarcane pieces. Repeated batch fermentations using sugarcane supported biocatalyst were successfully carried out for at least ten times without any significant loss in ethanol production from sugarcane juice and molasses. The number of cells attached to the support increased during the fermentation process, and fewer yeast cells leaked into fermentation broth. Ethanol concentrations (about 72.65~76.28 g/L in an average value) and ethanol productivities (about 2.27~2.36 g/L/hr in an average value) were high and stable, and residual sugar concentrations were low in all fermentations (0.9~3.25 g/L) with conversions ranging from 98.03~99.43%, showing efficiency 91.57~95.43 and operational stability of biocatalyst for ethanol fermentation. The results of the work pertaining to the use of sugarcane as immobilized yeast support could be promising for industrial fermentations.


Subject(s)
Adsorption , Capillaries , Ethanol , Fermentation , Immobilization , Microscopy, Electron, Scanning , Molasses , Saccharomyces cerevisiae , Saccharum , Sprains and Strains , Yeasts
SELECTION OF CITATIONS
SEARCH DETAIL
...