Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
J Thromb Haemost ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38815755

ABSTRACT

BACKGROUND: Inhibition of tissue factor pathway inhibitor (TFPI) is an emerging therapeutic strategy for treatment of hemophilia. Concizumab is a monoclonal antibody that binds TFPI and blocks its inhibition of factor (F)Xa thereby extending the initiation of coagulation and compensating for lack of FVIII or FIX. OBJECTIVES: The objective of this in vitro study was to evaluate how concizumab affects clot formation in hemophilia A under flow. METHODS: Blood was collected from normal controls or people with hemophilia A. An anti-FVIII antibody was added to normal controls to simulate hemophilia A with inhibitory antibodies to FVIII. Whole blood and recombinant activated FVII (rFVIIa, 25 nM) or concizumab (200, 1000, and 4000 ng/mL) were perfused at 100 s-1 over a surface micropatterned with tissue factor (TF) and collagen-related peptide. Platelet and fibrin(ogen) accumulation were measured by confocal microscopy. Static thrombin generation in plasma was measured in response to rFVIIa and concizumab. RESULTS: Concizumab (1000 and 4000 ng/mL) and rFVIIa both rescued (93%-101%) total platelet accumulation, but only partially rescued (53%-63%) fibrin(ogen) incorporation to normal control levels in simulated hemophilia A. Results using congenital hemophilia A blood confirmed effects of rFVIIa and concizumab. While these 2 agents had similar effect on clot formation under flow, concizumab enhanced thrombin generation in plasma under static conditions to a greater extent than rFVIIa. CONCLUSION: TFPI inhibition by concizumab enhanced activation and aggregation of platelets and fibrin clot formation in hemophilia A to levels comparable with that of rFVIIa.

2.
Proc Natl Acad Sci U S A ; 121(10): e2315083121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38408253

ABSTRACT

Tissue plasminogen activator (tPA) is the only FDA-approved treatment for ischemic stroke but carries significant risks, including major hemorrhage. Additional options are needed, especially in small vessel thrombi which account for ~25% of ischemic strokes. We have previously shown that tPA-functionalized colloidal microparticles can be assembled into microwheels (µwheels) and manipulated under the control of applied magnetic fields to enable rapid thrombolysis of fibrin gels in microfluidic models of thrombosis. Transparent zebrafish larvae have a highly conserved coagulation cascade that enables studies of hemostasis and thrombosis in the context of intact vasculature, clotting factors, and blood cells. Here, we show that tPA-functionalized µwheels can perform rapid and targeted recanalization in vivo. This effect requires both tPA and µwheels, as minimal to no recanalization is achieved with tPA alone, µwheels alone, or tPA-functionalized microparticles in the absence of a magnetic field. We evaluated tPA-functionalized µwheels in CRISPR-generated plasminogen (plg) heterozygous and homozygous mutants and confirmed that tPA-functionalized µwheels are dose-dependent on plasminogen for lysis. We have found that magnetically powered µwheels as a targeted tPA delivery system are dramatically more efficient at plasmin-mediated thrombolysis than systemic delivery in vivo. Further development of this system in fish and mammalian models could enable a less invasive strategy for alleviating ischemia that is safer than directed thrombectomy or systemic infusion of tPA.


Subject(s)
Stroke , Thrombosis , Animals , Tissue Plasminogen Activator/pharmacology , Tissue Plasminogen Activator/therapeutic use , Zebrafish , Plasminogen , Thrombosis/therapy , Thrombolytic Therapy , Mammals
3.
Langmuir ; 39(44): 15547-15552, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37877804

ABSTRACT

For in vivo applications, microbots (µbots) must move, which is a need that has led to designs, such as helical swimmers, that translate through the bulk fluid. We have previously demonstrated that, upon application of a rotating magnetic field, colloidal particles in aqueous systems can be reversibly assembled from superparamagnetic particles into µbots that translate along surfaces using wet friction. Here, we show that high-molecular-weight polymers of a size that approaches the length scale of the gap between the µbot and surface can be excluded, impacting µbot transport. Using xanthan gum as a convenient high-molecular-weight model, we determine that polymer depletion imparts only a weak effect on colloid-surface interactions but has a significant influence on local viscosity, which is an effect great enough to induce a reversal in the µbot translation direction.

4.
bioRxiv ; 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37745422

ABSTRACT

Tissue plasminogen activator (tPA) is the only FDA approved treatment for ischemic stroke but carries significant risks, including major hemorrhage. Additional options are needed, especially in small vessel thrombi which account for ~25% of ischemic strokes. We have previously shown that tPA-functionalized colloidal microparticles can be assembled into microwheels (µwheels) and manipulated under the control of applied magnetic fields to enable rapid thrombolysis of fibrin gels in microfluidic models of thrombosis. Providing a living microfluidic analog, transparent zebrafish larvae have a highly conserved coagulation cascade that enables studies of hemostasis and thrombosis in the context of intact vasculature, clotting factors, and blood cells. Here we show that tPA-functionalized µwheels can perform rapid and targeted recanalization in vivo. This effect requires both tPA and µwheels, as minimal to no recanalization is achieved with tPA alone, µwheels alone, or tPA-functionalized microparticles in the absence of a magnetic field. We evaluated tPA-µwheels in CRISPR-generated plasminogen (plg) heterozygous and homozygous mutants and confirmed that tPA-µwheels are dose-dependent on plasminogen for lysis. We have found that magnetically powered µwheels as a targeted tPA delivery system are dramatically more efficient at plasmin-mediated thrombolysis than systemic delivery in vivo. Further development of this system in fish and mammalian models could enable a less invasive strategy for alleviating ischemia that is safer than directed thrombectomy or systemic infusion of tPA.

5.
6.
ACS Omega ; 8(12): 11614-11622, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37008083

ABSTRACT

Inflammatory bowel disease (IBD) is mediated by an overexpression of tumor necrosis factor-α (TNF) by mononuclear cells in the intestinal mucosa. Intravenous delivery of neutralizing anti-TNF antibodies can cause systemic immunosuppression, and up to one-third of people are non-responsive to treatment. Oral delivery of anti-TNF could reduce adverse effects; however, it is hampered by antibody degradation in the harsh gut environment during transit and poor bioavailability. To overcome these shortcomings, we demonstrate magnetically powered hydrogel particles that roll along mucosal surfaces, provide protection from degradation, and sustain the local release of anti-TNF. Iron oxide particles are embedded into a cross-linked chitosan hydrogel and sieved to produce 100-200 µm particles called milliwheels (m-wheels). Once loaded with anti-TNF, these m-wheels release 10 to 80% of their payload over 1 week at a rate that depends on the cross-linking density and pH. A rotating magnetic field induces a torque on the m-wheels that results in rolling velocities greater than 500 µm/s on glass and mucus-secreting cells. The permeability of the TNF-challenged gut epithelial cell monolayers was rescued in the presence of anti-TNF carrying m-wheels, which both neutralized the TNF and created an impermeable patch over leaky cell junctions. With the ability to translate over mucosal surfaces at high speed, provide sustained release directly to the inflamed epithelium, and provide barrier rescue, m-wheels demonstrate a potential strategy to deliver therapeutic proteins for the treatment of IBD.

7.
Expert Rev Hematol ; 16(sup1): 39-54, 2023 03.
Article in English | MEDLINE | ID: mdl-36920856

ABSTRACT

BACKGROUND: Excessive or abnormal mucocutaneous bleeding (MCB) may impact all aspects of the physical and psychosocial wellbeing of those who live with it (PWMCB). The evidence base for the optimal diagnosis and management of disorders such as inherited platelet disorders, hereditary hemorrhagic telangiectasia (HHT), hypermobility spectrum disorders (HSD), Ehlers-Danlos syndromes (EDS), and von Willebrand disease (VWD) remains thin with enormous potential for targeted research. RESEARCH DESIGN AND METHODS: National Hemophilia Foundation and American Thrombosis and Hemostasis Network initiated the development of a National Research Blueprint for Inherited Bleeding Disorders with extensive all-stakeholder consultations to identify the priorities of people with inherited bleeding disorders and those who care for them. They recruited multidisciplinary expert working groups (WG) to distill community-identified priorities into concrete research questions and score their feasibility, impact, and risk. RESULTS: WG2 detailed 38 high priority research questions concerning the biology of MCB, VWD, inherited qualitative platelet function defects, HDS/EDS, HHT, bleeding disorder of unknown cause, novel therapeutics, and aging. CONCLUSIONS: Improving our understanding of the basic biology of MCB, large cohort longitudinal natural history studies, collaboration, and creative approaches to novel therapeutics will be important in maximizing the benefit of future research for the entire MCB community.


More people experience mucocutaneous bleeding (MCB), affecting tissues like skin and gums, than have hemophilia A or B. MCB is not understood as well as hemophilia. Common types of MCB include nosebleeds, bleeding gums, heavy menstrual bleeding, and digestive tract bleeding. Mucocutaneous inherited bleeding disorders include inherited platelet disorders, hereditary hemorrhagic telangiectasia (HHT), hypermobility spectrum disorders (HSD) and Ehlers-Danlos syndromes (EDS), von Willebrand Disease (VWD), and others. Diagnosing and treating MCB is complicated and sometimes medical providers dismiss the bleeding that patients report when they cannot find a medical explanation for it. Many people with mucocutaneous bleeding (PWMCB) do not receive the care they need; for example, women with VWD live with symptoms for, on average, 16 years before they are diagnosed in the US. This struggle to obtain care has important negative impacts on patients' physical and psychological health and their quality-of-life. The National Hemophilia Foundation (NHF), a large US bleeding disorders patient advocacy organization, set out to develop a National Research Blueprint for Inherited Bleeding Disorders focused on community priorities. They brought together a group of patients, providers, and researchers with MCB expertise to identify the research that would most improve the lives of PWMCB through targeted and accessible diagnostics and therapies. We report in this paper that research is needed to better understand the biology of MCB and to define the mechanisms of disease in these disorders. We also describe high priority research questions for each of the main disorders, novel therapeutics, and aging.


Subject(s)
Blood Platelet Disorders , Hemophilia A , von Willebrand Diseases , Humans , von Willebrand Diseases/diagnosis , von Willebrand Diseases/genetics , von Willebrand Diseases/therapy , Blood Platelet Disorders/diagnosis , Blood Platelet Disorders/genetics , Blood Platelet Disorders/therapy , Research
8.
J Infect Dis ; 227(8): 993-1001, 2023 04 18.
Article in English | MEDLINE | ID: mdl-36200236

ABSTRACT

Herpes zoster (HZ; shingles) caused by varicella zoster virus reactivation increases stroke risk for up to 1 year after HZ. The underlying mechanisms are unclear, however, the development of stroke distant from the site of zoster (eg, thoracic, lumbar, sacral) that can occur months after resolution of rash points to a long-lasting, virus-induced soluble factor (or factors) that can trigger thrombosis and/or vasculitis. Herein, we investigated the content and contributions of circulating plasma exosomes from HZ and non-HZ patient samples. Compared with non-HZ exosomes, HZ exosomes (1) contained proteins conferring a prothrombotic state to recipient cells and (2) activated platelets leading to the formation of platelet-leukocyte aggregates. Exosomes 3 months after HZ yielded similar results and also triggered cerebrovascular cells to secrete the proinflammatory cytokines, interleukin 6 and 8. These results can potentially change clinical practice through addition of antiplatelet agents for HZ and initiatives to increase HZ vaccine uptake to decrease stroke risk.


Subject(s)
Herpes Zoster , Stroke , Humans , Exosomes , Herpes Zoster/epidemiology , Herpesvirus 3, Human/physiology , Stroke/epidemiology , Risk Assessment , Male , Female , Plasma/cytology , Thrombosis/virology
9.
Adv Intell Syst ; 5(12)2023 Dec.
Article in English | MEDLINE | ID: mdl-38737989

ABSTRACT

For targeted transport in the body, biomedical microbots (µbots) must move effectively in three-dimensional (3D) microenvironments. Swimming µbots translate via asymmetric or screw-like motions while rolling ones use friction with available surfaces to generate propulsive forces. We have previously shown that planar rotating magnetic fields assemble µm-scale superparamagnetic beads into circular µbots that roll along surfaces. In this, gravity is required to pull µbots near the surface; however, this is not necessarily practical in complex geometries. Here we show that rotating magnetic fields, in tandem with directional magnetic gradient forces, can be used to roll µbots on surfaces regardless of orientation. Simplifying implementation, we use a spinning permanent magnet to generate differing ratios of rotating and gradient fields, optimizing control for different environments. This use of a single magnetic actuator sidesteps the need for complex electromagnet or tandem field setups, removes requisite gravitational load forces, and enables µbot targeting in complex 3D biomimetic microenvironments.

10.
Nat Nanotechnol ; 17(9): 1004-1014, 2022 09.
Article in English | MEDLINE | ID: mdl-35851383

ABSTRACT

Targeted drug delivery to disease-associated activated neutrophils can provide novel therapeutic opportunities while avoiding systemic effects on immune functions. We created a nanomedicine platform that uniquely utilizes an α1-antitrypsin-derived peptide to confer binding specificity to neutrophil elastase on activated neutrophils. Surface decoration with this peptide enabled specific anchorage of nanoparticles to activated neutrophils and platelet-neutrophil aggregates, in vitro and in vivo. Nanoparticle delivery of a model drug, hydroxychloroquine, demonstrated significant reduction of neutrophil activities in vitro and a therapeutic effect on murine venous thrombosis in vivo. This innovative approach of cell-specific and activation-state-specific targeting can be applied to several neutrophil-driven pathologies.


Subject(s)
Leukocyte Elastase , alpha 1-Antitrypsin Deficiency , Animals , Humans , Hydroxychloroquine/pharmacology , Leukocyte Elastase/metabolism , Mice , Nanomedicine , Neutrophils
11.
Platelets ; 33(8): 1119-1131, 2022 Nov 17.
Article in English | MEDLINE | ID: mdl-35659185

ABSTRACT

Apolipoprotein A-I (ApoA-I) is elevated in the plasma of a subgroup of trauma patients with systemic hyperfibrinolysis. We hypothesize that apoA-I inhibits platelet activation and clot formation. The effects of apoA-I on human platelet activation and clot formation were assessed by whole blood thrombelastography (TEG), platelet aggregometry, P-selectin surface expression, microfluidic adhesion, and Akt phosphorylation. Mouse models of carotid artery thrombosis and pulmonary embolism were used to assess the effects of apoA-I in vivo. The ApoA-1 receptor was investigated with transgenic mice knockouts (KO) for the scavenger receptor class B member 1 (SR-BI). Compared to controls, exogenous human apoA-I inhibited arachidonic acid and collagen-mediated human and mouse platelet aggregation, decreased P-selectin surface expression and Akt activation, resulting in diminished clot strength and increased clot lysis by TEG. ApoA-I also decreased platelet aggregate size formed on a collagen surface under flow. In vivo, apoA-I delayed vessel occlusion in an arterial thrombosis model and conferred a survival advantage in a pulmonary embolism model. SR-BI KO mice significantly reduced apoA-I inhibition of platelet aggregation versus wild-type platelets. Exogenous human apoA-I inhibits platelet activation, decreases clot strength and stability, and protects mice from arterial and venous thrombosis via the SR-BI receptor.


Subject(s)
Pulmonary Embolism , Thrombosis , Animals , Apolipoprotein A-I/metabolism , Apolipoprotein A-I/pharmacology , Arachidonic Acid/pharmacology , Blood Platelets/metabolism , CD36 Antigens/metabolism , Humans , Mice , P-Selectin/metabolism , Platelet Activation , Platelet Aggregation , Proto-Oncogene Proteins c-akt/metabolism
12.
J Thromb Haemost ; 20(2): 486-497, 2022 02.
Article in English | MEDLINE | ID: mdl-34882946

ABSTRACT

BACKGROUND: To reestablish blood flow in vessels occluded by clots, tissue plasminogen activator (tPA) can be used; however, its efficacy is limited by transport to and into a clot and by the depletion of its substrate, plasminogen. OBJECTIVES: To overcome these rate limitations, a platform was designed to co-deliver tPA and plasminogen based on microwheels (µwheels), wheel-like assemblies of superparamagnetic colloidal beads that roll along surfaces at high speeds. METHODS: The biochemical speed limit was determined by measuring fibrinolysis of plasma clots at varying concentrations of tPA (10-800 nM) and plasminogen (1-6 µM). Biotinylated magnetic mesoporous silica nanoparticles were synthesized and bound to streptavidin-coated superparamagnetic beads to make studded beads. Studded beads were loaded with plasminogen and tPA was immobilized on their surface. Plasminogen release and tPA activity were measured on the studded beads. Studded beads were assembled into µwheels with rotating magnetic fields and fibrinolysis of plasma clots was measured in a microfluidic device. RESULTS: The biochemical speed limit for plasma clots was ~15 µm/min. Plasminogen-loaded, tPA-immobilized µwheels lyse plasma clots at rates comparableto the biochemical speed limit. With the addition of a corkscrew motion, µwheels penetrate clots, thereby exceeding the biochemical speed limit (~20 µm/min) and achieving lysis rates 40-fold higher than 50 nM tPA. CONCLUSIONS: Co-delivery of an immobilized enzyme and its substrate via a microbot capable of mechanical work has the potential to target and rapidly lyse clots that are inaccessible by mechanical thrombectomy devices or recalcitrant to systemic tPA delivery.


Subject(s)
Drug Delivery Systems , Plasminogen , Thrombosis , Tissue Plasminogen Activator , Fibrin Clot Lysis Time , Fibrinolysis , Humans , Magnetic Iron Oxide Nanoparticles , Plasminogen/administration & dosage , Thrombosis/drug therapy , Tissue Plasminogen Activator/administration & dosage
13.
Metab Eng ; 69: 313-322, 2022 01.
Article in English | MEDLINE | ID: mdl-34954086

ABSTRACT

Platelet metabolism is linked to platelet hyper- and hypoactivity in numerous human diseases. Developing a detailed understanding of the link between metabolic shifts and platelet activation state is integral to improving human health. Here, we show the first application of isotopically nonstationary 13C metabolic flux analysis to quantitatively measure carbon fluxes in both resting and thrombin activated platelets. Metabolic flux analysis results show that resting platelets primarily metabolize glucose to lactate via glycolysis, while acetate is oxidized to fuel the tricarboxylic acid cycle. Upon activation with thrombin, a potent platelet agonist, platelets increase their uptake of glucose 3-fold. This results in an absolute increase in flux throughout central metabolism, but when compared to resting platelets they redistribute carbon dramatically. Activated platelets decrease relative flux to the oxidative pentose phosphate pathway and TCA cycle from glucose and increase relative flux to lactate. These results provide the first report of reaction-level carbon fluxes in platelets and allow us to distinguish metabolic fluxes with much higher resolution than previous studies.


Subject(s)
Blood Platelets , Metabolic Flux Analysis , Blood Platelets/metabolism , Carbon/metabolism , Glycolysis , Humans , Metabolic Flux Analysis/methods , Pentose Phosphate Pathway
14.
Nano Sel ; 3(7): 1185-1191, 2022 Jul.
Article in English | MEDLINE | ID: mdl-38737633

ABSTRACT

For disease of the lung, the physical key to effective inhalation-based therapy is size; too large (10's of µm) and the particles or droplets do not remain suspended in air to reach deep within the lungs, too small (subµm) and they are simply exhaled without deposition. µBots within this ideal low-µm size range however are challenging to fabricate and would lead to devices that lack the speed and power necessary for performing work throughout the pulmonary network. To uncouple size from structure and function, here we demonstrate an approach where individual building blocks are aerosolized and subsequently assembled in situ into µbots capable of translation, drug delivery, and mechanical work deep within lung mimics. With this strategy, a variety of pulmonary diseases previously difficult to treat may now be receptive to µbot-based therapies.

15.
Lab Chip ; 21(21): 4104-4117, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34523623

ABSTRACT

Cardiovascular disease remains one of the world's leading causes of death. Myocardial infarction (heart attack) is triggered by occlusion of coronary arteries by platelet-rich thrombi (clots). The development of new anti-platelet drugs to prevent myocardial infarction continues to be an active area of research and is dependent on accurately modelling the process of clot formation. Occlusive thrombi can be generated in vivo in a range of species, but these models are limited by variability and lack of relevance to human disease. Although in vitro models using human blood can overcome species-specific differences and improve translatability, many models do not generate occlusive thrombi. In those models that do achieve occlusion, time to occlusion is difficult to measure in an unbiased and objective manner. In this study we developed a simple and robust approach to determine occlusion time of a novel in vitro microfluidic assay. This highlighted the potential for occlusion to occur in thrombosis microfluidic devices through off-site coagulation, obscuring the effect of anti-platelet drugs. We therefore designed a novel occlusive thrombosis-on-a-chip microfluidic device that reliably generates occlusive thrombi at arterial shear rates by quenching downstream coagulation. We further validated our device and methods by using the approved anti-platelet drug, eptifibatide, recording a significant difference in the "time to occlude" in treated devices compared to control conditions. These results demonstrate that this device can be used to monitor the effect of antithrombotic drugs on time to occlude, and, for the first time, delivers this essential data in an unbiased and objective manner.


Subject(s)
Pharmaceutical Preparations , Thrombosis , Blood Coagulation , Blood Platelets , Humans , Lab-On-A-Chip Devices , Thrombosis/drug therapy
16.
J Thromb Haemost ; 19(11): 2857-2861, 2021 11.
Article in English | MEDLINE | ID: mdl-34455689

ABSTRACT

Recent manufacturing problems and increased utilization has created a shortage of 3.2% sodium citrate blood collection tubes used for coagulation testing, causing stakeholders such as hospitals, clinics and laboratories, to find suitable alternatives. Considerations for in-house citrate blood collection tube preparations or purchasing commercial products from unknown manufacturing sources is of particular concern to laboratories that perform coagulation testing. It is well recognized that variability exists between citrate blood collection tube manufacturers, thereby making any transition to new blood collection methods more challenging than simply switching to a new source. This document provides provisional guidance for validating alternative sources of sodium citrate blood collection tubes (commercial or in-house preparations) prior to clinical implementation.


Subject(s)
Blood Coagulation , Hemostasis , Anticoagulants/pharmacology , Blood Coagulation Tests , Blood Specimen Collection , Humans , Sodium Citrate/pharmacology
17.
J Thromb Haemost ; 19(2): 582-587, 2021 02.
Article in English | MEDLINE | ID: mdl-34396675

ABSTRACT

In vitro flow-based assays are widely used to investigate the role of platelets and coagulation in hemostasis and thrombosis. Their main advantage over other assays relies on the fact that they integrate blood flow that regulates many aspects of platelet function, including adhesion, activation, and aggregation. Blood flow is also central in the regulation of coagulation through its ability to modulate the local concentrations of coagulation factors within and around thrombi. The most broadly used assay to study thrombus formation consists in perfusing whole blood over immobilized fibrillar collagen through a single channel, which helps to reproduce thrombus formation as it occurs in vivo after vascular injury, with platelets adhering, becoming activated, and forming a mural thrombus. This process can also be studied under conditions of thrombin generation, notably by recalcifying blood collected in sodium citrate. In this manuscript, we briefly discuss the advantages and limits of this broadly used "in vitro thrombus formation model." The main emphasis is on the description of the most recent developments regarding design of new flow models and new techniques, and how these may advance the landscape of in vitro studies into the formation of physiological or pathophysiological thrombi. Challenges linked to mimicking the formation of a hemostatic plug in a healthy vessel or a thrombus in diseased arteries and the complexity of reproducing the various aspects of venous thrombosis are discussed. Future directions are proposed to improve the physiological or pathophysiological relevance of current flow-based assays.


Subject(s)
Hemostasis , Thrombosis , Blood Coagulation , Blood Platelets , Humans , Platelet Function Tests
19.
Res Pract Thromb Haemost ; 5(5): e12548, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34278188

ABSTRACT

This illustrated review focuses on the physical forces that regulate hemostasis and thrombosis. These phenomena span from the vessel to the cellular to the molecular scales. Blood is a complex fluid with a viscosity that varies with how fast it flows and the size of the vessel through which it flows. Blood flow imposes forces on the vessel wall and blood cells that dictates the kinetics, structure, and stability of thrombi. The mechanical properties of blood cells create a segmented flowing fluid whereby red blood cells concentrate in the vessel core and platelets marginate to the near-wall region. At the vessel wall, shear stresses are highest, which requires a repertoire of receptors with different bond kinetics to roll, tether, adhere, and activate on inflamed endothelium and extracellular matrices. As a thrombus grows and then contracts, forces regulate platelet aggregation as well as von Willebrand factor function and fibrin mechanics. Forces can also originate from platelets as they respond to the external forces and sense the stiffness of their local environment.

20.
Semin Thromb Hemost ; 47(2): 129-138, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33657623

ABSTRACT

Computational models of various facets of hemostasis and thrombosis have increased substantially in the last decade. These models have the potential to make predictions that can uncover new mechanisms within the complex dynamics of thrombus formation. However, these predictions are only as good as the data and assumptions they are built upon, and therefore model building requires intimate coupling with experiments. The objective of this article is to guide the reader through how a computational model is built and how it can inform and be refined by experiments. This is accomplished by answering six questions facing the model builder: (1) Why make a model? (2) What kind of model should be built? (3) How is the model built? (4) Is the model a "good" model? (5) Do we believe the model? (6) Is the model useful? These questions are answered in the context of a model of thrombus formation that has been successfully applied to understanding the interplay between blood flow, platelet deposition, and coagulation and in identifying potential modifiers of thrombin generation in hemophilia A.


Subject(s)
Hemostasis/immunology , Humans , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...