Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Gen Mikrobiol Virusol ; (1): 15-22, 2007.
Article in Russian | MEDLINE | ID: mdl-17354604

ABSTRACT

The evolution of the genome of the pathogenic agent of the seventh cholera pandemia Vibrio cholerae eltor biovariant was thought to occur by acquiring not only structural genes of virulence but also regulatory systems as a result of horizontal transfer events. The polymerase chain reaction revealed the presence of the following regulatory genes that control the virulence gene expression in the chromosome of pre-pandemic and pandemic strains of cholera vibrios eltor: toxR, toxT, tcpP, tcpH, luxS, luxO, crp, vicH, pepA. The avirulent V. cholerae strain ATCC14033 isolated in 1910 (hypothetical predecessor of the cholera eltor agent) was shown to be lacking the regulatory genes toxT, tcpP, tcpHlocalized in the pathogenicity island VPI-1, and to be capable of realizing positive control over the expression of the virulence genes involved in the ToxR regulon. The virulent strains isolated from cholera patients during the local cholera outbreak in Indonesia in 1937 did not differ from the strains that caused cholera eltor pandemic in 1961. The strains had identical content of the regulatory genes tested. Only one strain of the four isolates studied contained no tcpPgene. Two key regulatory genes, toxR and toxT, were sequenced in all the isolates. The toxR nucleotide sequence of three pre-pandemic strains was shown to be indistinguishable from that of the pandemic isolates. On the other hand, the clinical strain MAK757 isolated prior to the emergence of the epidemic demonstrated an altered nucleotide sequence in its toxR gene. Experiments with the intra-intestinal challenge of suckling rabbits were indicative of similar virulence levels for the pre-pandemic and pandemic clinical strains. These results may serve as the evidence of the in vivo activity of the pre-pandemic strains of the toxT, tcpH, and tcpP positive regulatory genes that acquired in V. cholerae during the evolutionary process.


Subject(s)
Cholera/epidemiology , Disease Outbreaks , Gene Expression Regulation, Bacterial , Transcription Factors/genetics , Vibrio cholerae/genetics , Vibrio cholerae/pathogenicity , Animals , Base Sequence , Evolution, Molecular , Genes, Bacterial , Molecular Sequence Data , Rabbits , Vibrio cholerae/isolation & purification , Virulence/genetics
2.
Article in Russian | MEDLINE | ID: mdl-18283731

ABSTRACT

Comparative analysis of CTXphi prophage genome of 366 V. cholerae El Tor strains isolated from infected people and water was carried out using the polymerase chain reaction. Four groups of vibrios, which carry different combinations of ctxA, zot, and ace genes from core region of CTXphi prophage coding key (cholera enterotoxin) and accessory (Zot and Ace toxins) pathogenicity factors, were determined: ctxA(+) zot(-) ace(+), ctxA(-) zot(+) ace(+), ctxA(-) zot(+) ace(-), ctxA(-) zot(-) ace(+). Vibrios that had lost all tested genes were also revealed. Genomic rearrangements occurring in water environment in virulent V. cholerae strains, which acquired foreign pathogenicity genes necessary for their existence in human organism, were proposed as one of the mechanisms of formation of clones with an incomplete or no prophage. Infection process in model animals challenged with wild and isogenic strains of V. cholerae differing in the set of the phage genes (ctxA, zot, and ace) was comparatively analyzed. It was shown that variability of CTXphi prophage genome was an important factor of modification of cholera vibrios virulent characteristics. Obtained data point to usefulness of ctxA, zot, and ace phage genes detection in wild V. cholerae isolates as it could permit evaluation of their virulent potential determining the severity of the infection.


Subject(s)
Bacteriophages/genetics , Cholera/microbiology , Genome, Viral , Prophages/genetics , Vibrio cholerae O1/virology , Water Microbiology , Animals , Cholera Toxin/genetics , Endotoxins , Genetic Variation , Genomic Islands/genetics , Humans , Polymerase Chain Reaction , Rabbits , Vibrio cholerae O1/genetics , Vibrio cholerae O1/pathogenicity , Viral Core Proteins/genetics , Virulence
3.
Genetika ; 41(1): 53-62, 2005 Jan.
Article in Russian | MEDLINE | ID: mdl-15771251

ABSTRACT

Genetic organization of 52 Vibrio cholerae El Tor biotype preseventh and seventh pandemic strains isolated in various periods was studied by PCR assay and DNA-DNA hybridization. It was established that the genome of most ancient of analyzed strains isolated from a diarrhea patient in 1910 was devoid of CTX and RS1 prophages, vibrio pathogenicity islands (VPI and VPI-2), and pandemic islands (VSP-1 and VSP-2) that contain key virulence genes. The appearance of pathogenic properties in cholera vibrios for the first time causing a local outbreak of cholera in 1937 is connected with the acquisition of VPI and CTX that carried genes tcpA and ctx-AB, respectively, which are responsible for the colonization of small intestine and encode the production of cholera toxin. The appearance of seventh pandemic agent for cholera was shown to correlate with the acquisition by its precursor of two additional blocks of genes VSP-1 and VSP-2. This finding strongly supports the involvement of these genes in formation of the pandemic potential in strains. Molecular typing methods allowed elucidation of differences in the genetic organization between prepandemic and pandemic strains. The detected variability of the genome of contemporary virulent strains may be a reason for the occurrence of etiological agent for cholera with new properties.


Subject(s)
Cholera/epidemiology , Genome, Bacterial , Vibrio cholerae/genetics , Base Sequence , DNA Primers
SELECTION OF CITATIONS
SEARCH DETAIL
...