Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Pathog ; 189: 106588, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38369169

ABSTRACT

Heartwater is one of the most economically important tick-borne fatal diseases of livestock. The disease is caused by the bacteria Ehrlichia ruminantium transmitted by Amblyomma ticks. Although there is evidence that interferon-gamma controls E. ruminantium growth and that cellular immune responses are protective, an effective recombinant vaccine for this disease is lacking. Analyses of markers associated with infection as well as protection will lead to a better understanding of the E. ruminantium immune response and corresponding pathways induced in sheep peripheral blood mononuclear cells (PBMC) will assist in development of such a vaccine. In this study, Biomarkers of infection (BMI) were identified as uniquely expressed genes during primary infection and biomarkers of protection (BMP) associated with immune to heartwater were identified post challenge. Sheep were experimentally infected and challenged with E. ruminantium infected ticks. The immune phenotypic and transcriptome profile of their PBMC were compared to their own naïve PBMC collected before infection. The study revealed 305 differentially expressed genes (DEGs) as BMI, of these 17 were upregulated at all three time-points investigated. These DEGs, form part of the bacterial invasion of epithelial cells Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway, and others detected from day 1 post infection and are considered predictive markers for early heartwater infection in ruminants. Similarly, a total of 332 DEGs were identified as BMP, of these 100 were upregulated and 75 were downregulated at all three time-points investigated. However, at D1PC most DEGs were downregulated (n = 1312) that correlated with a reduction in the % CD4 and CD8 T cells detected with flow cytometry. KEGG pathway analyses showed complete down regulation of T cell specific pathways possibly due to homing of immune cells to the site of infection after acquired immunity developed. At D4PC, expression levels of most of these downregulated genes increased and by D6PC they were upregulated. This indicates that the sampling time-point for biomarker analyses is important when results for acquired immune responses are inferred. This data identified DEGs that could be considered as biomarkers of protective immunity that can be used for identification of vaccine antigens and provides a strong foundation to further development of heartwater recombinant vaccines.


Subject(s)
Ehrlichia ruminantium , Heartwater Disease , Ticks , Sheep , Animals , Ehrlichia ruminantium/genetics , Leukocytes, Mononuclear , Heartwater Disease/diagnosis , Heartwater Disease/prevention & control , Vaccines, Synthetic , Ticks/microbiology , Biomarkers , RNA
2.
Front Vet Sci ; 7: 256, 2020.
Article in English | MEDLINE | ID: mdl-32509806

ABSTRACT

Lumpy skin disease and Rift Valley fever are two high-priority livestock diseases which have the potential to spread into previously free regions through animal movement and/or vectors, as well as intentional release by bioterrorists. Since the distribution range of both diseases is similar in Africa, it makes sense to use a bivalent vaccine to control them. This may lead to the more consistent and sustainable use of vaccination against Rift Valley fever through a more cost-effective vaccine. In this study, a recombinant lumpy skin disease virus was constructed in which the thymidine kinase gene was used as the insertion site for the Gn and Gc protective glycoprotein genes of Rift Valley fever virus using homologous recombination. Selection markers, the enhanced green fluorescent protein and Escherichia coli guanidine phosphoribosyl transferase (gpt), were used for selection of recombinant virus and in a manner enabling a second recombination event to occur upon removal of the gpt selection-pressure allowing the removal of both marker genes in the final product. This recombinant virus, LSD-RVF.mf, was selected to homogeneity, characterized and evaluated in cattle as a vaccine to show protection against both lumpy skin disease and Rift Valley fever in cattle. The results demonstrate that the LSD-RVF.mf is safe, immunogenic and can protect cattle against both diseases.

3.
Mol Immunol ; 91: 238-248, 2017 11.
Article in English | MEDLINE | ID: mdl-28988038

ABSTRACT

Heartwater is a tick-borne non-infectious fatal disease of wild and domestic ruminants caused by the bacterium Ehrlichia ruminantium, transmitted by Amblyomma ticks. Although there is evidence that interferon-gamma (IFN-γ) controls E. ruminantium growth and that cellular immune responses could be protective, an effective recombinant vaccine for this disease is lacking. An overall analysis of which immune pathways are up- or down-regulated in sheep peripheral blood mononuclear cells is expected to lead to a better understanding of the global immune response of sheep to E. ruminantium infection. Therefore, a systems biology oriented approach following the infection with E. ruminantium was investigated from peripheral blood mononuclear cells to aid recombinant vaccine development. In this study, heartwater naïve sheep were infected and challenged by allowing E. ruminantium infected ticks to feed on them. After primary infection, all the animals were treated with antibiotic during the resulting febrile response. Blood was collected daily for E. ruminantium detection by qPCR (pCS20 assay). The pCS20 assay only detected the pathogen in the blood one day prior to and during the febrile stage of infection confirming infection of the sheep. IFN-γ real-time PCR indicated that this cytokine was expressed at specific time points: post infection, during the febrile stage of the disease and after challenge. These were used as a guide to select samples for transcriptome sequencing. This paper focuses on transcripts that are associated with innate activating pathways that were identified to be up- and down-regulated after primary infection and the subsequent challenge. These included the CD14 monocyte marker, toll-like receptor (TLR), nod-like receptor, chemokine, cytosolic and cytokine-cytokine interaction receptor pathways. In particular, TLR4, TLR9 and CD14 were activated together with DNA detection pathways, suggesting that vaccine formulations may be improved if CpG motifs and lipopolysaccharides are included. This data indicates that innate immune activation, perhaps by using adjuvants, should be an important component for consideration during future heartwater recombinant vaccine development.


Subject(s)
Ehrlichia ruminantium/immunology , Heartwater Disease/immunology , Immunity, Innate , Leukocytes, Mononuclear/immunology , Sheep Diseases/immunology , Sheep/immunology , Transcriptome/immunology , Animals , Female , Heartwater Disease/pathology , Leukocytes, Mononuclear/pathology , Male , Sheep/microbiology , Sheep Diseases/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...