Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Ecol ; 93(5): 540-553, 2024 May.
Article in English | MEDLINE | ID: mdl-38509643

ABSTRACT

Understanding how anthropogenic activities induce changes in the functional traits of arthropod communities is critical to assessing their ecological consequences. However, we largely lack comprehensive assessments of the long-term impact of global-change drivers on the trait composition of arthropod communities across a large number of species and sites. This knowledge gap critically hampers our ability to predict human-driven impacts on communities and ecosystems. Here, we use a dataset of 1.73 million individuals from 877 species to study how four functionally important traits of carabid beetles and spiders (i.e. body size, duration of activity period, tolerance to drought, and dispersal capacity) have changed at the community level across ~40 years in different types of land use and as a consequence of land use changes (that is, urbanisation and loss of woody vegetation) at the landscape scale in Switzerland. The results show that the mean body size in carabid communities declined in all types of land use, with particularly stronger declines in croplands compared to forests. Furthermore, the length of the activity period and the tolerance to drought of spider communities decreased in most land use types. The average body size of carabid communities in landscapes with increased urbanisation in the last ~40 years tended to decrease. However, the length of the activity period, the tolerance to drought, and the dispersal capacity did not change significantly. Furthermore, urbanisation promoted increases in the average dispersal capacities of spider communities. Additionally, urbanisation favoured spider communities with larger body sizes and longer activity periods. The loss of woody areas at the landscape level was associated with trait shifts to carabid communities with larger body sizes, shorter activity periods, higher drought tolerances and strongly decreased dispersal capacities. Decreases in activity periods and dispersal capacities were also found in spider communities. Our study demonstrates that human-induced changes in land use alter key functional traits of carabid and spider communities in the long term. The detected trait shifts in arthropod communities likely have important consequences for their functional roles in ecosystems.


Subject(s)
Spiders , Animals , Spiders/physiology , Switzerland , Coleoptera/physiology , Body Size , Urbanization , Ecosystem , Droughts , Arthropods/physiology , Forests
2.
Nat Ecol Evol ; 7(2): 236-249, 2023 02.
Article in English | MEDLINE | ID: mdl-36376602

ABSTRACT

The impact of local biodiversity loss on ecosystem functioning is well established, but the role of larger-scale biodiversity dynamics in the delivery of ecosystem services remains poorly understood. Here we address this gap using a comprehensive dataset describing the supply of 16 cultural, regulating and provisioning ecosystem services in 150 European agricultural grassland plots, and detailed multi-scale data on land use and plant diversity. After controlling for land-use and abiotic factors, we show that both plot-level and surrounding plant diversity play an important role in the supply of cultural and aboveground regulating ecosystem services. In contrast, provisioning and belowground regulating ecosystem services are more strongly driven by field-level management and abiotic factors. Structural equation models revealed that surrounding plant diversity promotes ecosystem services both directly, probably by fostering the spill-over of ecosystem service providers from surrounding areas, and indirectly, by maintaining plot-level diversity. By influencing the ecosystem services that local stakeholders prioritized, biodiversity at different scales was also shown to positively influence a wide range of stakeholder groups. These results provide a comprehensive picture of which ecosystem services rely most strongly on biodiversity, and the respective scales of biodiversity that drive these services. This key information is required for the upscaling of biodiversity-ecosystem service relationships, and the informed management of biodiversity within agricultural landscapes.


Subject(s)
Biodiversity , Ecosystem , Agriculture/methods , Plants
3.
Nat Commun ; 13(1): 7611, 2022 12 12.
Article in English | MEDLINE | ID: mdl-36509742

ABSTRACT

Climate and land-use changes are main drivers of insect declines, but their combined effects have not yet been quantified over large spatiotemporal scales. We analysed changes in the distribution (mean occupancy of squares) of 390 insect species (butterflies, grasshoppers, dragonflies), using 1.45 million records from across bioclimatic gradients of Switzerland between 1980 and 2020. We found no overall decline, but strong increases and decreases in the distributions of different species. For species that showed strongest increases (25% quantile), the average proportion of occupied squares increased in 40 years by 0.128 (95% credible interval: 0.123-0.132), which equals an average increase in mean occupancy of 71.3% (95% CI: 67.4-75.1%) relative to their 40-year mean occupancy. For species that showed strongest declines (25% quantile), the average proportion decreased by 0.0660 (95% CI: 0.0613-0.0709), equalling an average decrease in mean occupancy of 58.3% (95% CI: 52.2-64.4%). Decreases were strongest for narrow-ranged, specialised, and cold-adapted species. Short-term distribution changes were associated to both climate changes and regional land-use changes. Moreover, interactive effects between climate and regional land-use changes confirm that the various drivers of global change can have even greater impacts on biodiversity in combination than alone. In contrast, 40-year distribution changes were not clearly related to regional land-use changes, potentially reflecting mixed changes in local land use after 1980. Climate warming however was strongly linked to 40-year changes, indicating its key role in driving insect trends of temperate regions in recent decades.


Subject(s)
Butterflies , Odonata , Animals , Birds , Climate Change , Biodiversity , Ecosystem
4.
PLoS One ; 17(3): e0263618, 2022.
Article in English | MEDLINE | ID: mdl-35259175

ABSTRACT

The observation and assessment of animal biodiversity using acoustic technology has developed considerably in recent years. Current eco-acoustic research focuses on automatic audio recorder arrays and acoustic indices, which may be used to study the spatial and temporal dynamics of local animal communities in high resolution. While such soundscapes have often been studied above ground, their applicability in soils has rarely been tested. For the first time, we applied acoustic and statistical methods to explore the spatial, diurnal, and seasonal dynamics of the soundscape in soils. We studied the dynamics of acoustic complexity in forest soils in the alpine Pfynwald forest in the Swiss canton of Valais and related them to meteorological and microclimatic data. To increase microclimatic variability, we used a long-term irrigation experiment. We also took soil samples close to the sensors on 6 days in different seasons. Daily and seasonal patterns of acoustic complexity were predicted to be associated with abiotic parameters-that is, meteorological and microclimatic conditions-and mediated by the dynamics of the diversity and activity of the soil fauna. Seasonal patterns in acoustic complexity showed the highest acoustic complexity values in spring and summer, decreasing in fall and winter. Diurnal acoustic complexity values were highest in the afternoon and lowest during the night. The measurement of acoustic diversity at the sampling site was significantly associated with soil communities, with relationships between taxa richness or community composition and acoustic complexity being strongest shortly before taking the soil samples. Our results suggest that the temporal and spatial dynamics of the diversity and community composition of soil organisms can be predicted by the acoustic complexity of soil soundscapes. This opens up the possibility of using soil soundscape analysis as a noninvasive and easy-to-use method for soil biodiversity monitoring programs.


Subject(s)
Biodiversity , Soil , Acoustics , Animals , Ecosystem , Forests , Seasons , Soil Microbiology
5.
Ecosystems ; 24(2): 467-483, 2021.
Article in English | MEDLINE | ID: mdl-34776776

ABSTRACT

Decomposition, vegetation regeneration, and biological control are essential ecosystem functions, and animals are involved in the underlying processes, such as dung removal, seed removal, herbivory, and predation. Despite evidence for declines of animal diversity and abundance due to climate change and land-use intensification, we poorly understand how animal-mediated processes respond to these global change drivers. We experimentally measured rates of four ecosystem processes in 134 grassland and 149 forest plots in Germany and tested their response to climatic conditions and land-use intensity, that is, grazing, mowing, and fertilization in grasslands and the proportion of harvested wood, non-natural trees, and deadwood origin in forests. For both climate and land use, we distinguished between short-term effects during the survey period and medium-term effects during the preceding years. Forests had significantly higher process rates than grasslands. In grasslands, the climatic effects on the process rates were similar or stronger than land-use effects, except for predation; land-use intensity negatively affected several process rates. In forests, the land-use effects were more pronounced than the climatic effects on all processes except for predation. The proportion of non-natural trees had the greatest impact on the process rates in forests. The proportion of harvested wood had negative effects, whereas the proportion of anthropogenic deadwood had positive effects on some processes. The effects of climatic conditions and land-use intensity on process rates mirror climatic and habitat effects on animal abundance, activity, and resource quality. Our study demonstrates that land-use changes and interventions affecting climatic conditions will have substantial impacts on animal-mediated ecosystem processes.

6.
Sci Adv ; 7(20)2021 05.
Article in English | MEDLINE | ID: mdl-33990326

ABSTRACT

Land-use intensification poses major threats to biodiversity, such as to insect herbivore communities. The stability of these communities depends on interactions linking herbivores and host plants. How interaction network structure begets robustness, and thus stability, in different ecosystems and how network structure and robustness are altered along land-use intensity gradients are unclear. We analyzed plant-herbivore networks based on literature-derived interactions and long-term sampling from 289 grasslands and forests in three regions of Germany. Network size and nestedness were the most important determinants of network robustness in both ecosystems. Along land-use intensity gradients, networks in moderately grazed grasslands were more robust than in those managed by frequent mowing or fertilization. In forests, changes of network robustness along land-use intensity gradients relied on changes in plant species richness. Our results expand our knowledge of the stability of plant-herbivore networks and indicate options for management aimed at stabilizing herbivore communities.

7.
Ecol Appl ; 30(6): e02133, 2020 09.
Article in English | MEDLINE | ID: mdl-32299121

ABSTRACT

Seminatural grasslands are important biodiversity hotspots, but they are increasingly degraded by intensive agriculture. Grassland restoration is considered to be promising in halting the ongoing loss of biodiversity, but this evaluation is mostly based on plant communities. Insect herbivores contribute substantially to grassland biodiversity and to the provisioning of a variety of ecosystem functions. However, it is unclear how they respond to different measures that are commonly used to restore seminatural grasslands from intensively used agricultural land. We studied the long-term success of different restoration techniques, which were originally targeted at reestablishing seminatural grassland plant communities, for herbivorous insect communities on taxonomic as well as functional level. Therefore, we sampled insect communities 22 yr after the establishment of restoration measures. These measures ranged from harvest and removal of biomass to removal of the topsoil layer and subsequent seeding of plant propagules. We found that insect communities in restored grasslands had higher taxonomic and functional diversity compared to intensively managed agricultural grasslands and were more similar in composition to target grasslands. Restoration measures including topsoil removal proved to be more effective, in particular in restoring species characterized by functional traits susceptible to intensive agriculture (e.g., large-bodied species). Our study shows that long-term success in the restoration of herbivorous insect communities of seminatural grasslands can be achieved by different restoration measures and that more invasive approaches that involve the removal of the topsoil layer are more effective. We attribute these restoration successes to accompanying changes in the plant community, resulting in bottom-up control of the herbivore community. Our results are of critical importance for management decisions aiming to restore multi-trophic communities, their functional composition and consequently the proliferation of ecosystem functions.


Subject(s)
Grassland , Herbivory , Animals , Biodiversity , Ecosystem , Insecta
8.
J Clin Microbiol ; 41(2): 900-4, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12574312

ABSTRACT

Cases of porcine malignant catarrhal fever were analyzed by a combination of identification and quantitation of ovine gammaherpesvirus 2 DNA in a variety of paraffin-embedded tissues from diseased pigs, serology, and exclusion of primary porcine gammaherpesviruses. In spite of reduced signal due to fixation and paraffin embedding, ovine gammaherpesvirus 2 DNA in pig brains exceeded the amounts found in sheep brains by orders of magnitude.


Subject(s)
Gammaherpesvirinae/isolation & purification , Herpesviridae Infections/veterinary , Malignant Catarrh/virology , Sheep Diseases/virology , Swine Diseases/virology , Animals , Brain/pathology , Brain/virology , DNA, Viral/analysis , Gammaherpesvirinae/physiology , Histological Techniques , Malignant Catarrh/pathology , Sheep , Swine , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL
...