Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ERJ Open Res ; 2(2)2016 Apr.
Article in English | MEDLINE | ID: mdl-27730191

ABSTRACT

The concentration of hydrogen peroxide (H2O2) in exhaled air has been reported to be elevated in asthma and chronic obstructive pulmonary disease (COPD), but results are inconsistent and difficult to reproduce. As H2O2 occurs in ambient air, we examined its association with exhaled H2O2 in human subjects. Exhaled breath condensate (EBC) of 12 COPD patients and nine healthy control subjects was collected either with an inhalation filter (efficiency 81%) or without. Ambient air condensate (AAC) was collected in parallel and samples were analysed for H2O2. Additionally, ambient H2O2 was recorded by an atmospheric measuring device (online fluorometric measurement). H2O2 concentration in AAC was significantly higher (p<0.001) than in EBC. AAC variations were concordant with the data from the atmospheric measuring instrument. In both subjects' groups, the inhalation filter reduced H2O2 values (p<0.01). Despite generally low levels in exhaled air, analysis by a mathematical model revealed a contribution from endogenous H2O2 production. The low H2O2 levels in exhaled air are explained by the reconditioning of H2O2-containing inhaled air in the airways. Inhaled H2O2 may be one factor in the heterogeneity and limited reproducibility of study results. A valid determination of endogenous H2O2 production requires inhalation filters.

2.
Chemphyschem ; 8(14): 2133-7, 2007 Oct 08.
Article in English | MEDLINE | ID: mdl-17722222

ABSTRACT

A silicon-on-insulator (SOI) based thin film resistor is employed for the label-free determination of enzymatic activity. We demonstrate that enzymes, which cleave biological polyelectrolyte substrates, can be detected by the sensor. As an application, we consider the serine endopeptidase trypsin, which cleaves poly-L-lysine (PLL). We show that PLL adsorbs quasi-irreversibly to the sensor and is digested by trypsin directly at the sensor surface. The created PLL fragments are released into the bulk solution due to kinetic reasons. This results in a measurable change of the surface potential allowing for the determination of trypsin concentrations down to 50 ng mL(-1). Chymotrypsin is a similar endopeptidase with a different specificity, which cleaves PLL with a lower efficiency as compared to trypsin. The activity of trypsin is analyzed quantitatively employing a kinetic model for enzyme-catalyzed surface reactions. Moreover, we have demonstrated the specific inactivation of trypsin by a serine protease inhibitor, which covalently binds to the active site of the enzyme.


Subject(s)
Chemistry, Physical/methods , Chymotrypsin/chemistry , Silicon/chemistry , Trypsin/chemistry , Biosensing Techniques , Catalysis , Electrochemistry/methods , Endopeptidases/chemistry , Kinetics , Polylysine/chemistry , Polymers/chemistry , Silicon Dioxide/chemistry , Surface Properties , Time Factors
3.
Langmuir ; 23(7): 4048-52, 2007 Mar 27.
Article in English | MEDLINE | ID: mdl-17315907

ABSTRACT

The formation of polyelectrolyte multilayers (PEMs) is investigated using a silicon-on-insulator based thin film resistor which is sensitive to variations of the surface potential. The buildup of the PEMs at the silicon oxide surface of the device can be observed in real time as defined potential shifts. The influence of polymer charge density is studied using the strong polyanion poly(styrene sulfonate), PSS, combined with the statistical copolymer poly(diallyl-dimethyl-ammoniumchloride-stat-N-methyl-N-vinylacetamide), P(DADMAC-stat-NMVA), at various degrees of charge (DC). The multilayer formation stops after a few deposition steps for a DC below 75%. We show that the threshold of surface charge compensation corresponds to the threshold of multilayer formation. However, no reversion of the preceding surface charge was observed. Screening of polyelectrolyte charges by mobile ions within the polymer film leads to a decrease of the potential shifts with the number of layers deposited. This decrease is much slower for PEMs consisting of P(DADMAC-stat-NMVA) and PSS as compared to PEMs consisting of poly(allylamine-hydrochloride), PAH, and PSS. From this, significant differences in the dielectric constants of the polyelectrolyte films and in the concentration of mobile ions within the films can be derived.


Subject(s)
Membranes, Artificial , Polymers , Silicon Dioxide , Silicon , Electric Impedance
SELECTION OF CITATIONS
SEARCH DETAIL
...