Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
NAR Cancer ; 5(3): zcad036, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37435531

ABSTRACT

Breast cancer is the most common type of cancer among women worldwide, and it is estimated that 294 000 new diagnoses and 37 000 deaths will occur each year in the United States alone by 2030. Large-scale genomic studies have identified a number of genetic loci with alterations in breast cancer. However, identification of the genes that are critical for tumorgenicity still remains a challenge. Here, we perform a comprehensive functional multi-omics analysis of somatic mutations in breast cancer and identify previously unknown key regulators of breast cancer tumorgenicity. We identify dysregulation of MYCBP2, an E3 ubiquitin ligase and an upstream regulator of mTOR signaling, is accompanied with decreased disease-free survival. We validate MYCBP2 as a key target through depletion siRNA using in vitro apoptosis assays in MCF10A, MCF7 and T47D cells. We demonstrate that MYCBP2 loss is associated with resistance to apoptosis from cisplatin-induced DNA damage and cell cycle changes, and that CHEK1 inhibition can modulate MYCBP2 activity and caspase cleavage. Furthermore, we show that MYCBP2 knockdown is associated with transcriptomic responses in TSC2 and in apoptosis genes and interleukins. Therefore, we show that MYCBP2 is an important genetic target that represents a key node regulating multiple molecular pathways in breast cancer corresponding with apparent drug resistance in our study.

2.
Nat Commun ; 14(1): 2109, 2023 04 13.
Article in English | MEDLINE | ID: mdl-37055410

ABSTRACT

Chemotherapy prior to immune checkpoint blockade (ICB) treatment appears to improve ICB efficacy but resistance to ICB remains a clinical challenge and is attributed to highly plastic myeloid cells associating with the tumor immune microenvironment (TIME). Here we show by CITE-seq single-cell transcriptomic and trajectory analyses that neoadjuvant low-dose metronomic chemotherapy (MCT) leads to a characteristic co-evolution of divergent myeloid cell subsets in female triple-negative breast cancer (TNBC). Specifically, we identify that the proportion of CXCL16 + myeloid cells increase and a high STAT1 regulon activity distinguishes Programmed Death Ligand 1 (PD-L1) expressing immature myeloid cells. Chemical inhibition of STAT1 signaling in MCT-primed breast cancer sensitizes TNBC to ICB treatment, which underscores the STAT1's role in modulating TIME. In summary, we leverage single-cell analyses to dissect the cellular dynamics in the tumor microenvironment (TME) following neoadjuvant chemotherapy and provide a pre-clinical rationale for modulating STAT1 in combination with anti-PD-1 for TNBC patients.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Female , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Radioimmunotherapy , Myeloid Cells , Chemokine CXCL16 , Tumor Microenvironment , STAT1 Transcription Factor/genetics
3.
Sci Adv ; 7(2)2021 01.
Article in English | MEDLINE | ID: mdl-33523961

ABSTRACT

Alzheimer's disease (AD), the most common form of dementia, is recognized as a heterogeneous disease with diverse pathophysiologic mechanisms. In this study, we interrogate the molecular heterogeneity of AD by analyzing 1543 transcriptomes across five brain regions in two AD cohorts using an integrative network approach. We identify three major molecular subtypes of AD corresponding to different combinations of multiple dysregulated pathways, such as susceptibility to tau-mediated neurodegeneration, amyloid-ß neuroinflammation, synaptic signaling, immune activity, mitochondria organization, and myelination. Multiscale network analysis reveals subtype-specific drivers such as GABRB2, LRP10, MSN, PLP1, and ATP6V1A We further demonstrate that variations between existing AD mouse models recapitulate a certain degree of subtype heterogeneity, which may partially explain why a vast majority of drugs that succeeded in specific mouse models do not align with generalized human trials across all AD subtypes. Therefore, subtyping patients with AD is a critical step toward precision medicine for this devastating disease.


Subject(s)
Alzheimer Disease , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Brain/metabolism , Humans , Mice , RNA/metabolism , Sequence Analysis, RNA , tau Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...