Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 67(4): 2264-2286, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38351709

ABSTRACT

Delamanid, bedaquiline, and pretomanid have been recently added in the anti-tuberculosis (anti-TB) treatment regimens and have emerged as potential solutions for combating drug-resistant TB. These drugs have proven to be effective in treating drug-resistant TB when used in combination. However, concerns have been raised about the eventual loss of these drugs due to evolving resistance mechanisms and certain adverse effects such as prolonged QT period, gastrointestinal problems, hepatotoxicity, and renal disorders. This Perspective emphasizes the properties of these first-in-class drugs, including their mechanism of action, pharmacokinetics/pharmacodynamics profiles, clinical studies, adverse events, and underlying resistance mechanisms. A brief coverage of efforts toward the generation of best-in-class leads in each class is also provided. The ongoing clinical trials of new combinations of these drugs are discussed, thus providing a better insight into the use of these drugs while designing an effective treatment regimen for resistant TB cases.


Subject(s)
Diarylquinolines , Drug-Related Side Effects and Adverse Reactions , Mycobacterium tuberculosis , Nitroimidazoles , Tuberculosis, Multidrug-Resistant , Humans , Antitubercular Agents/adverse effects , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology , Nitroimidazoles/pharmacology , Nitroimidazoles/therapeutic use , Oxazoles/pharmacology , Oxazoles/therapeutic use , Drug Resistance
2.
ACS Infect Dis ; 10(2): 513-526, 2024 02 09.
Article in English | MEDLINE | ID: mdl-38238154

ABSTRACT

Identification of structurally unique chemical entities targeting unexplored bacterial targets is a prerequisite to combat increasing drug resistance against Mycobacterium tuberculosis. This study employed a whole-cell screening approach as an initial filter to scrutinize a 10,000-compound chemical library, resulting in the discovery of seven potent compounds with MIC values ranging from 1.56 to 25 µM. These compounds were categorized into four distinct chemical groups. Remarkably, they demonstrated efficacy against drug-resistant and nonreplicating tuberculosis strains, highlighting their effectiveness across different infection states. With a favorable selectivity index (>10), these compounds showed a safe therapeutic range and exhibited potency in an intracellular model of Mtb infection, mimicking the in vivo setup. Combining these identified hits with established anti-TB drugs revealed additive effects with rifampicin, isoniazid, and bedaquiline. Notably, IIIM-IDD-01 exhibited synergy with isoniazid and bedaquiline, likely due to their complementary mechanisms of targeting Mtb. Most potent hits, IIIM-IDD-01 and IIIM-IDD-02, displayed time- and concentration-dependent killing of Mtb. Mechanistic insights were sought through SEM and docking studies, although comprehensive evaluation is ongoing to unravel the hits' specific targets and modes of action. The hits demonstrated favorable pharmacokinetic properties (ADME-Tox) and showed a low risk of adverse effects, along with a predicted high level of oral bioavailability. These promising hits can serve as an initial basis for subsequent medicinal chemistry endeavors aimed at developing a new series of anti-TB agents. Moreover, the study affirms the significance of high-throughput in vitro assays for the TB drug discovery. It also emphasizes the necessity of targeting diverse TB strains to address the heterogeneity of tuberculosis bacteria.


Subject(s)
Latent Tuberculosis , Mycobacterium tuberculosis , Tuberculosis , Humans , Antitubercular Agents/chemistry , Isoniazid/pharmacology , Microbial Sensitivity Tests , Tuberculosis/microbiology
3.
Eur J Med Chem ; 265: 116058, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38128237

ABSTRACT

The significant challenge in confronting TB eradication is the discursive treatment that results in the disease reactivation, patient non compliance and drug resistance. The presently available drug regimen for TB largely targets the active bacilli and thus remains inadequate against the dormant or persistent subpopulation of Mtb that results in latent TB affecting a quarter of the global population. The crucial pathways that are particularly essential for the survival of dormant Mtb demand better apprehension. Novel drugs are needed to specifically address these persisters in order to enhance treatment effectiveness. Among such pathways, the glyoxylate bypass plays a critical role in the persistence and latent infection of Mtb, making it a promising target for drug development in recent years. In this review, we have compiled the attributes of bacterial subpopulations liable for latent TB and the pathways indispensable for their survival. Specifically, we delve into the glyoxylate shunt pathway and its key enzymes as potential drug targets.


Subject(s)
Latent Tuberculosis , Mycobacterium tuberculosis , Tuberculosis , Humans , Mycobacterium tuberculosis/metabolism , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Antitubercular Agents/metabolism , Latent Tuberculosis/drug therapy , Tuberculosis/drug therapy , Tuberculosis/microbiology , Drug Discovery , Glyoxylates/metabolism , Glyoxylates/therapeutic use
4.
Tuberculosis (Edinb) ; 140: 102340, 2023 05.
Article in English | MEDLINE | ID: mdl-37031646

ABSTRACT

Tuberculosis has remained a global concern for public health affecting the lives of people for ages. Approximately 10 million people are affected by the disease and 1.5 million succumb to the disease worldwide annually. The COVID-19 pandemic has highlighted the role of early diagnosis to win the battle against such infectious diseases. Thus, advancement in the diagnostic approaches to provide early detection forms the foundation to eradicate and manage contagious diseases like tuberculosis. The conventional diagnostic strategies include microscopic examination, chest X-ray and tuberculin skin test. The limitations associated with sensitivity and specificity of these tests demands for exploring new techniques like probe-based assays, CRISPR-Cas and microRNA detection. The aim of the current review is to envisage the correlation between both the conventional and the newer approaches to enhance the specificity and sensitivity. A significant emphasis has been placed upon nanodiagnostic approaches manipulating quantum dots, magnetic nanoparticles, and biosensors for accurate diagnosis of latent, active and drug-resistant TB. Additionally, we would like to ponder upon a reliable method that is cost-effective, reproducible, require minimal infrastructure and provide point-of-care to the patients.


Subject(s)
COVID-19 , Mycobacterium tuberculosis , Tuberculosis , Humans , Mycobacterium tuberculosis/genetics , Pandemics , COVID-19/diagnosis , Tuberculosis/diagnosis , Tuberculin Test/methods
5.
Clin Chim Acta ; 538: 139-156, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36403665

ABSTRACT

The SARS-CoV-2 pandemic has claimed around 6.4 million lives worldwide. The disease symptoms range from mild flu-like infection to life-threatening complications. The widespread infection demands rapid, simple, and accurate diagnosis. Currently used methods include molecular biology-based approaches that consist of conventional amplification by RT-PCR, isothermal amplification-based techniques such as RT-LAMP, and gene editing tools like CRISPR-Cas. Other methods include immunological detection including ELISA, lateral flow immunoassay, chemiluminescence, etc. Radiological-based approaches are also being used. Despite good analytical performance of these current methods, there is an unmet need for less costly and simpler tests that may be performed at point of care. Accordingly, nanomaterial-based testing has been extensively pursued. In this review, we discuss the currently used diagnostic techniques for SARS-CoV-2, their usefulness, and limitations. In addition, nanoparticle-based approaches have been highlighted as another potential means of detection. The review provides a deep insight into the current diagnostic methods and future trends to combat this deadly menace.


Subject(s)
COVID-19 , Nanoparticles , Humans , COVID-19/diagnosis , SARS-CoV-2/genetics , COVID-19 Testing , Sensitivity and Specificity , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , RNA, Viral/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...