Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Microbiol Spectr ; 12(7): e0041224, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38809023

ABSTRACT

The host immune responses play a pivotal role in the establishment of long-term memory responses, which effectively aids in infection clearance. However, the prevailing anti-tuberculosis therapy, while aiming to combat tuberculosis (TB), also debilitates innate and adaptive immune components of the host. In this study, we explored how the front-line anti-TB drugs impact the host immune cells by modulating multiple signaling pathways and subsequently leading to disease relapse. Administration of these drugs led to a reduction in innate immune activation and also the cytokines required to trigger protective T cell responses. Moreover, these drugs led to activation-induced cell death in the mycobacterial-specific T cell leading to a reduced killing capacity. Furthermore, these drugs stalled the T cell differentiation into memory subsets by modulating the activation of STAT3, STAT4, FOXO1, and NFκB transcription factors and hampering the Th1 and Th17-mediated long-term host protective memory responses. These findings suggest the urgent need to augment directly observed treatment, short-course (DOTS) therapy with immunomodulatory agents to mitigate the adverse effects linked to the treatment.IMPORTANCEAs a central component of TB eradication initiatives, directly observed treatment, short-course (DOTS) therapy imparts immune-dampening effects during the course of treatment. This approach undermines the host immune system by delaying the activation process and lowering the immune response. In our investigation, we have unveiled the impact of DOTS on specific immune cell populations. Notably, the signaling pathways involving STAT3 and STAT4 critical for memory responses and NFκß associated with pro-inflammation were substantially declined due to the therapy. Consequently, these drugs exhibit limited effectiveness in preventing recurrence of the disease. These observations highlight the imperative integration of immunomodulators to manage TB infection.


Subject(s)
Antitubercular Agents , Cytokines , Mycobacterium tuberculosis , Tuberculosis , Antitubercular Agents/therapeutic use , Antitubercular Agents/pharmacology , Tuberculosis/drug therapy , Tuberculosis/immunology , Tuberculosis/microbiology , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/immunology , Humans , Animals , Mice , Cytokines/metabolism , Immunity, Innate/drug effects , Recurrence , Signal Transduction/drug effects , Immunologic Memory/drug effects , Female , Mice, Inbred C57BL , Th1 Cells/immunology , Th1 Cells/drug effects , Th17 Cells/immunology , Th17 Cells/drug effects
2.
iScience ; 26(5): 106644, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37192966

ABSTRACT

Bacille Calmette-Guerin (BCG) generates limited long-lasting adaptive memory responses leading to short-lived protection against adult pulmonary tuberculosis (TB). Here, we show that host sirtuin 2 (SIRT2) inhibition by AGK2 significantly enhances the BCG vaccine efficacy during primary infection and TB recurrence through enhanced stem cell memory (TSCM) responses. SIRT2 inhibition modulated the proteome landscape of CD4+ T cells affecting pathways involved in cellular metabolism and T-cell differentiation. Precisely, AGK2 treatment enriched the IFNγ-producing TSCM cells by activating ß-catenin and glycolysis. Furthermore, SIRT2 specifically targeted histone H3 and NF-κB p65 to induce proinflammatory responses. Finally, inhibition of the Wnt/ß-catenin pathway abolished the protective effects of AGK2 treatment during BCG vaccination. Taken together, this study provides a direct link between BCG vaccination, epigenetics, and memory immune responses. We identify SIRT2 as a key regulator of memory T cells during BCG vaccination and project SIRT2 inhibitors as potential immunoprophylaxis against TB.

3.
Oxf Open Immunol ; 4(1): iqad001, 2023.
Article in English | MEDLINE | ID: mdl-37051070

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes lethal coronavirus disease (COVID-19). SARS-CoV-2 has been the chief source of threat to public health and safety from 2019 to the present. SARS-CoV-2 caused a sudden and significant rise in hospitalization due to respiratory issues and pneumonia. We are consistently uncovering new information about SARS-CoV-2, and yet so much is to explore to implement efficient interventions to combat the emergent variants and spread of the ongoing pandemic. Information regarding the existing COVID-19 pandemic is streamlining continuously. However, clinical symptoms of SARS-CoV-2 infections spanning from asymptomatic infection to severe death-instigating disease remain consistent with preliminary reports. In this review, we have briefly introduced highlights of the COVID-19 pandemic and features of SARS-CoV-2. We have focused on current knowledge of innate and adaptive immune responses during SARS-CoV-2 infections and persisting clinical features of recovered patients. Furthermore, we have discussed how these immune responses are not tightly regulated and imbalance can direct the latter phases of COVID-19, long-COVID symptoms, and cause detrimental immunopathogenesis. COVID-19 vaccines are also discussed in detail to describe the efforts going around the world to control and prevent the infection. Overall, we have summarized the current knowledge on the immunology of SARS-CoV-2 infection and the utilization of that knowledge in the development of a suitable COVID-19 therapeutics and vaccines.

4.
PLoS Pathog ; 19(3): e1011165, 2023 03.
Article in English | MEDLINE | ID: mdl-36881595

ABSTRACT

Stimulation of naïve T cells during primary infection or vaccination drives the differentiation and expansion of effector and memory T cells that mediate immediate and long-term protection. Despite self-reliant rescue from infection, BCG vaccination, and treatment, long-term memory is rarely established against Mycobacterium tuberculosis (M.tb) resulting in recurrent tuberculosis (TB). Here, we show that berberine (BBR) enhances innate defense mechanisms against M.tb and stimulates the differentiation of Th1/Th17 specific effector memory (TEM), central memory (TCM), and tissue-resident memory (TRM) responses leading to enhanced host protection against drug-sensitive and drug-resistant TB. Through whole proteome analysis of human PBMCs derived from PPD+ healthy individuals, we identify BBR modulated NOTCH3/PTEN/AKT/FOXO1 pathway as the central mechanism of elevated TEM and TRM responses in the human CD4+ T cells. Moreover, BBR-induced glycolysis resulted in enhanced effector functions leading to superior Th1/Th17 responses in human and murine T cells. This regulation of T cell memory by BBR remarkably enhanced the BCG-induced anti-tubercular immunity and lowered the rate of TB recurrence due to relapse and re-infection. These results thus suggest tuning immunological memory as a feasible approach to augment host resistance against TB and unveil BBR as a potential adjunct immunotherapeutic and immunoprophylactic against TB.


Subject(s)
Berberine , Tuberculosis , Humans , Animals , Mice , Berberine/pharmacology , Proto-Oncogene Proteins c-akt , BCG Vaccine , Memory T Cells , Receptor, Notch3
5.
Microbiol Spectr ; : e0058323, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36916966

ABSTRACT

The fate of Mycobacterium tuberculosis infection is governed by immune signaling pathways that can either eliminate the pathogen or result in tuberculosis (TB). Anti-TB therapy (ATT) is extensive and is efficacious only against active, drug-sensitive strains of M. tuberculosis. Due to severe side effects, ATT often causes impairment of host immunity, making it imperative to use novel immunotherapeutics for better clinical outcomes. In this study, we have explored the immunomodulatory potential of withaferin A (WA) as an immunotherapeutic against TB. Here, we demonstrate that WA can constrain intracellular drug-sensitive and -resistant strains of M. tuberculosis by augmenting host immune responses. We also established the potential of WA treatment in conjunction with isoniazid. We show that WA directs the host macrophages toward defensive M1 polarization and enhances TH1 and TH17 immune responses against M. tuberculosis infection. The reduced bacterial burden upon T cell adoptive transfer further corroborated the augmented T cell responses. Interestingly, WA stimulated the generation of T cell memory populations by instigating STAT signaling, thereby reducing the rate of TB recurrence due to reactivation and reinfection. We substantiate the prospects of WA as a potent adjunct immunomodulator that enriches protective memory cells by prompting STAT signaling and improves host defense against M. tuberculosis. IMPORTANCE Despite being extensive, conventional antituberculosis therapy (ATT) is barely proficient in providing sterile immunity to tuberculosis (TB). Failure to constrain the escalating global TB burden due to the emergence of drug-resistant bacterial strains and immune dampening effects of ATT necessitates adjunct immunotherapeutics for better clinical outcomes. We evaluated the prospects of withaferin A (WA), an active constituent of Withania somnifera, as an adjunct immunomodulator against diverse M. tuberculosis strains. WA efficiently restricts the progression of TB by stimulating antimycobacterial host responses, protective immune signaling, and activation of diverse immune cell populations. Protective effects of WA can be attributed to the enrichment of memory T cells by induction of STAT signaling, thereby enhancing resistance to reinfections and reactivation of disease. We ascertained the immunotherapeutic potential of WA in boosting host immune responses against M. tuberculosis.

6.
Front Immunol ; 13: 944183, 2022.
Article in English | MEDLINE | ID: mdl-35967410

ABSTRACT

The pursuit to improve the TB control program comprising one approved vaccine, M. bovis Bacille Calmette-Guerin (BCG) has directed researchers to explore progressive approaches to halt the eternal TB pandemic. Mycobacterium tuberculosis (M.tb) was first identified as the causative agent of TB in 1882 by Dr. Robert Koch. However, TB has plagued living beings since ancient times and continues to endure as an eternal scourge ravaging even with existing chemoprophylaxis and preventive therapy. We have scientifically come a long way since then, but despite accessibility to the standard antimycobacterial antibiotics and prophylactic vaccine, almost one-fourth of humankind is infected latently with M.tb. Existing therapeutics fail to control TB, due to the upsurge of drug-resistant strains and increasing incidents of co-infections in immune-compromised individuals. Unresponsiveness to established antibiotics leaves patients with no therapeutic possibilities. Hence the search for an efficacious TB immunization strategy is a global health priority. Researchers are paving the course for efficient vaccination strategies with the radically advanced operation of core principles of protective immune responses against M.tb. In this review; we have reassessed the progression of the TB vaccination program comprising BCG immunization in children and potential stratagems to reinforce BCG-induced protection in adults.


Subject(s)
Tuberculosis Vaccines , Tuberculosis , Adult , Anti-Bacterial Agents/therapeutic use , BCG Vaccine , Child , Humans , Vaccination
7.
PLoS Pathog ; 17(8): e1009805, 2021 08.
Article in English | MEDLINE | ID: mdl-34415976

ABSTRACT

Tuberculosis (TB) remains a major health problem throughout the world with one third of the population latently infected and ~1.74 million deaths annually. Current therapy consists of multiple antibiotics and a lengthy treatment regimen, which is associated with risk for the generation of drug-resistant Mycobacterium tuberculosis variants. Therefore, alternate host directed strategies that can shorten treatment length and enhance anti-TB immunity during the treatment phase are urgently needed. Here, we show that Luteolin, a plant-derived hepatoprotective immunomodulator, when administered along with isoniazid as potential host directed therapy promotes anti-TB immunity, reduces the length of TB treatment and prevents disease relapse. Luteolin also enhances long-term anti-TB immunity by promoting central memory T cell responses. Furthermore, we found that Luteolin enhances the activities of natural killer and natural killer T cells, both of which exhibit antitubercular attributes. Therefore, the addition of Luteolin to conventional antibiotic therapy may provide a means to avoid the development of drug-resistance and to improve disease outcome.


Subject(s)
Antitubercular Agents/pharmacology , Chemical and Drug Induced Liver Injury/prevention & control , Immunotherapy/methods , Isoniazid/pharmacology , Luteolin/pharmacology , Mycobacterium tuberculosis/immunology , Tuberculosis/drug therapy , Animals , Chemical and Drug Induced Liver Injury/etiology , Drug Therapy, Combination , Immunologic Factors , Isoniazid/adverse effects , Mice , Mice, Inbred C57BL , Mycobacterium tuberculosis/drug effects , Tuberculosis/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...