Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 2763, 2024 02 02.
Article in English | MEDLINE | ID: mdl-38307873

ABSTRACT

The Beas River is one of the important rivers of the Indus River system located in Himachal Pradesh, India, that harbors a diverse range of freshwater fish species. The present study employed COI gene to investigate the ichthyofaunal diversity of river Beas. Through the sequencing of 203 specimens from Beas River, we identified 43 species, belonging to 31 genera, 16 families, and 10 orders. To analyze the genetic divergence and phylogeny of identified species, 485 sequences of Indian origin were retrieved from BOLD, resulting in a dataset of 688 sequences. Our findings consistently revealed a hierarchical increase in the mean K2P genetic divergence within species (0.80%), genus (9.06%), and families (15.35%). Automated Barcode Gap discovery, Neighbour Joining, and Bayesian inference consensus tree methodologies were employed to determine the putative species and their phylogeny, successfully delimiting most of the species with only a few exceptions. The results unveiled six species exhibiting high intra-species divergence (> 2%), suggesting the presence of sibling species and falsely identified sequences on online databases. The present study established the first DNA barcoding-based inventory of freshwater fish species in the Beas River providing comprehensive insights into economically exploited endangered and vulnerable species. In order to ensure the sustainable use of aquatic resources in the Beas River, we recommend the implementation of species measures to protect biodiversity and genetic resources.


Subject(s)
DNA Barcoding, Taxonomic , Rivers , Humans , Animals , DNA Barcoding, Taxonomic/methods , Bayes Theorem , Electron Transport Complex IV/genetics , Fishes/genetics , Fresh Water , DNA , Phylogeny , Biodiversity
2.
Mitochondrial DNA B Resour ; 4(2): 2956-2961, 2019 Sep 09.
Article in English | MEDLINE | ID: mdl-33365810

ABSTRACT

Different pattern of genetic diversity and population genetic structure among the species are reported due to their different ecological requirements, adaptability and the evolutionary histories. Understanding such patterns in a species and between the populations is important to develop the effective conservation plans. Very limited studies are available, how different factors influencing the gene flow of a species especially in fish communities. Therefore, the present study is aimed to document the genetic diversity and population genetic structure of the three species of Cyprinidae fishes (Puntius sophore, Pethia ticto, and Pethia conchonius) sharing the same kind of habitat using the mitochondrial cytochrome c oxidase subunit 1 (CO1). We used 80 samples of the three species from different river/streams. In which we observed total 4-9 haplotypes in all three species with the intra-species sequenced divergence ranges between 0.002 and 0.019. The nucleotide and haplotype diversity was ranged from 0.002040 to 0.01007 and from 0.251 to 0.822, respectively. Neutrality test values were found to be positive only in the P. ticto but statistically non-significant. The AMOVA variation among the populations was 8.89-84.30% whereas, within the populations, it was ranged from 15.70 to 91.11%. The median-joining haplotype network suggests the stable population size over the time and haplotypes were clustered with respect to their geographic locations except the P. conchonius. Similar pattern observed in the phylogenetic tree.

SELECTION OF CITATIONS
SEARCH DETAIL
...