Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 7(1): 822, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971889

ABSTRACT

Translational studies benefit from experimental designs where laboratory organisms use human-relevant behaviors. One such behavior is decision-making, however studying complex decision-making in rodents is labor-intensive and typically restricted to two levels of cost/reward. We design a fully automated, inexpensive, high-throughput framework to study decision-making across multiple levels of rewards and costs: the REward-COst in Rodent Decision-making (RECORD) system. RECORD integrates three components: 1) 3D-printed arenas, 2) custom electronic hardware, and 3) software. We validated four behavioral protocols without employing any food or water restriction, highlighting the versatility of our system. RECORD data exposes heterogeneity in decision-making both within and across individuals that is quantifiably constrained. Using oxycodone self-administration and alcohol-consumption as test cases, we reveal how analytic approaches that incorporate behavioral heterogeneity are sensitive to detecting perturbations in decision-making. RECORD is a powerful approach to studying decision-making in rodents, with features that facilitate translational studies of decision-making in psychiatric disorders.


Subject(s)
Behavior, Animal , Decision Making , Animals , Male , Rats , Mice , Oxycodone/administration & dosage , Reward , Alcohol Drinking/psychology , Feeding Behavior , Self Administration , Software
2.
Curr Opin Neurobiol ; 86: 102856, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38508102

ABSTRACT

Relapse to drug use during abstinence is a defining feature of addiction. To date, however, results from studies using rat relapse/reinstatement models have yet to result in FDA-approved medications for relapse prevention. To address this translational gap, we and others have developed rat models of relapse after voluntary abstinence from drug self-administration. One of these models is the electric barrier conflict model. Here, we introduce the model, and then review studies on behavioral and neuropharmacological mechanisms of cue-induced relapse and incubation of drug seeking (time-dependent increase in drug seeking during abstinence) after electric barrier-induced abstinence. We also briefly discuss future directions and potential clinical implications. One major conclusion of our review is that the brain mechanisms controlling drug relapse after electrical barrier-induced voluntary abstinence are likely distinct from those controlling relapse after homecage forced abstinence.


Subject(s)
Recurrence , Animals , Drug-Seeking Behavior/physiology , Humans , Substance-Related Disorders , Rats , Self Administration , Disease Models, Animal
3.
Neuropharmacology ; 240: 109681, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37611823

ABSTRACT

Nicotine vapor consumption via electronic nicotine delivery systems has increased over the last decade. While prior work has shed light on the health effects of nicotine vapor inhalation, its unique effects on the brain and behavior have not been thoroughly explored. In this study we assessed markers of withdrawal following 14 days of nicotine vapor exposure. For Experiment 1, 21 adult male rats were exposed to ambient air or 6, 12, or 24 mg/mL nicotine vapor for 14 consecutive days. Following exposure on day 14, rats were injected with the nicotinic receptor antagonist mecamylamine (3.0 mg/mL) and assessed for somatic withdrawal signs and anxiety-like behavior in the elevated plus maze. For Experiment 2, 12 adult male rats were tested for intracranial self-stimulation (ICSS) immediately following exposure to vehicle vapor (50%/50%, vegetable glycerin/propylene glycol) or 24 mg/mL nicotine vapor, for 14 consecutive days. ICSS behavior was assessed for an additional 14 days, following cessation of repeated vapor exposure. Results reveal that rats with repeated nicotine vapor exposure display an increase in behavioral indicators of withdrawal following injection of mecamylamine (precipitated withdrawal). Additionally, increases in ICSS stimulation thresholds, indicative of reduced brain reward sensitivity, persist following cessation of repeated nicotine vapor exposure (spontaneous withdrawal). These data suggest that repeated e-cigarette use leads to nicotine dependence and withdrawal that affects behavior and brain reward function. Further characterization of the health effects of nicotine vapor is necessary to improve treatment strategies for nicotine use disorder and public health policies related to novel nicotine delivery systems.

4.
J Comp Neurol ; 528(11): 1833-1855, 2020 07 15.
Article in English | MEDLINE | ID: mdl-31950494

ABSTRACT

The hypothalamus contains catecholaminergic neurons marked by the expression of tyrosine hydroxylase (TH). As multiple chemical messengers coexist in each neuron, we determined if hypothalamic TH-immunoreactive (ir) neurons express vesicular glutamate or GABA transporters. We used Cre/loxP recombination to express enhanced GFP (EGFP) in neurons expressing the vesicular glutamate (vGLUT2) or GABA transporter (vGAT), then determined whether TH-ir neurons colocalized with native EGFPVglut2 - or EGFPVgat -fluorescence, respectively. EGFPVglut2 neurons were not TH-ir. However, discrete TH-ir signals colocalized with EGFPVgat neurons, which we validated by in situ hybridization for Vgat mRNA. To contextualize the observed pattern of colocalization between TH-ir and EGFPVgat , we first performed Nissl-based parcellation and plane-of-section analysis, and then mapped the distribution of TH-ir EGFPVgat neurons onto atlas templates from the Allen Reference Atlas (ARA) for the mouse brain. TH-ir EGFPVgat neurons were distributed throughout the rostrocaudal extent of the hypothalamus. Within the ARA ontology of gray matter regions, TH-ir neurons localized primarily to the periventricular hypothalamic zone, periventricular hypothalamic region, and lateral hypothalamic zone. There was a strong presence of EGFPVgat fluorescence in TH-ir neurons across all brain regions, but the most striking colocalization was found in a circumscribed portion of the zona incerta (ZI)-a region assigned to the hypothalamus in the ARA-where every TH-ir neuron expressed EGFPVgat . Neurochemical characterization of these ZI neurons revealed that they display immunoreactivity for dopamine but not dopamine ß-hydroxylase. Collectively, these findings indicate the existence of a novel mouse hypothalamic population that may signal through the release of GABA and/or dopamine.


Subject(s)
Hypothalamus/cytology , Neurons/cytology , Neurons/metabolism , Tyrosine 3-Monooxygenase/metabolism , Vesicular Inhibitory Amino Acid Transport Proteins/metabolism , Animals , Female , Hypothalamus/metabolism , Male , Mice , Vesicular Glutamate Transport Proteins/metabolism
5.
PLoS One ; 11(5): e0155824, 2016.
Article in English | MEDLINE | ID: mdl-27196138

ABSTRACT

Biodiversity hotspots, which harbor more endemic species than elsewhere on Earth, are increasingly threatened. There is a need to accelerate collection efforts in these regions before threatened or endangered species become extinct. The diverse geographical, ecological, genetic, morphological, and behavioral data generated from the on-site collection of an individual specimen are useful for many scientific purposes. However, traditional methods for specimen preparation in the field do not permit researchers to retrieve neuroanatomical data, disregarding potentially useful data for increasing our understanding of brain diversity. These data have helped clarify brain evolution, deciphered relationships between structure and function, and revealed constraints and selective pressures that provide context about the evolution of complex behavior. Here, we report our field-testing of two commonly used laboratory-based techniques for brain preservation while on a collecting expedition in the Congo Basin and Albertine Rift, two poorly known regions associated with the Eastern Afromontane biodiversity hotspot. First, we found that transcardial perfusion fixation and long-term brain storage, conducted in remote field conditions with no access to cold storage laboratory equipment, had no observable impact on cytoarchitectural features of lizard brain tissue when compared to lizard brain tissue processed under laboratory conditions. Second, field-perfused brain tissue subjected to prolonged post-fixation remained readily compatible with subsequent immunohistochemical detection of neural antigens, with immunostaining that was comparable to that of laboratory-perfused brain tissue. Third, immersion-fixation of lizard brains, prepared under identical environmental conditions, was readily compatible with subsequent iodine-enhanced X-ray microcomputed tomography, which facilitated the non-destructive imaging of the intact brain within its skull. In summary, we have validated multiple approaches to preserving intact lizard brains in remote field conditions with limited access to supplies and a high degree of environmental exposure. This protocol should serve as a malleable framework for researchers attempting to rescue perishable and irreplaceable morphological and molecular data from regions of disappearing biodiversity. Our approach can be harnessed to extend the numbers of species being actively studied by the neuroscience community, by reducing some of the difficulty associated with acquiring brains of animal species that are not readily available in captivity.


Subject(s)
Biodiversity , Brain/pathology , Conservation of Natural Resources/methods , Endangered Species , Neuroanatomy/methods , Tissue Preservation , Animals , Ecology , Ecosystem , Geography , Heart/physiology , Immunohistochemistry , Lizards , Perfusion , Uganda , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL
...