Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38894041

ABSTRACT

This study aimed to evaluate the micro-mechanical and macro-mechanical properties of self-cured and light-cured alkasite and to investigate how accelerated degradation in acidic, alkaline, and ethanol solutions affects the macro-mechanical properties of self-cured and light-cured alkasite. The specimens of the alkasite material (Cention Forte, Ivoclar Vivadent) were prepared according to the following three curing modes: (1) light-cured immediately, (2) light-cured after a 5-min delay, and (3) self-cured. Microhardness was tested before and after immersion in absolute ethanol to indirectly determine crosslink density, while flexural strength and flexural modulus were measured using a three-point bending test after accelerated aging in the following solutions: (1) lactic acid solution (pH = 4.0), (2) NaOH solution (pH = 13.0), (3) phosphate-buffered saline solution (pH = 7.4), and (4) 75% ethanol solution. The data were statistically analyzed using a two-way ANOVA and Tukey post hoc test. The results showed that the microhardness, flexural strength, and flexural modulus were significantly lower in self-cured specimens compared to light-cured specimens. A 5-min delay between the extrusion of the material from the capsule and light curing had no significant effect on any of the measured properties. A significant effect of the accelerated aging solutions on macro-mechanical properties was observed, with ethanol and alkaline solutions having a particularly detrimental effect. In conclusion, light curing was preferable to self-curing, as it resulted in significantly better micro- and macro-mechanical properties, while a 5-min delay between mixing the capsule and light curing had no negative effects.

2.
Nanomaterials (Basel) ; 13(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36678057

ABSTRACT

The objective of this study was to compare the polymerization kinetics of bulk-fill resin composites cured with a LED-curing device and a diode laser (449 nm). Three bulk-fill composites were light-cured with constant radiation exposure at 10 J/cm2 by varying radiant exitance and curing time. The following three light-curing protocols were used: (I) 3300 mW/cm2 for 3 s; (II) 2000 mW/cm2 for 5 s; and (III) 1000 mW/cm2 for 10 s. The degree of conversion (DC) was monitored in real time at a data acquisition rate of 2 spectra/s over a 5-min period and again after seven days using Fourier transform infrared spectroscopy. DC amounted to 30.9-61.7% at 4-mm depth after 5 min. DC values of two sculptable composites were significantly higher with the laser, regardless of the curing protocol used, but not for the flowable composite. The maximum polymerization rate (2.0-22.1%/s) was less affected by the type of curing device for one of the composites, while the other two composites achieved significantly higher values when cured with the laser. Laser curing generally increased the DC and the maximum polymerization rate while it shortened the onset of the maximum reaction rate. New handheld laser devices with adjustable power have the potential to be used as a photopolymerization light source for new generations of bulk-fill composites.

3.
Int J Mol Sci ; 23(15)2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35897771

ABSTRACT

We embedded copper-doped mesoporous bioactive glass nanospheres (Cu-MBGN) with antibacterial and ion-releasing properties into experimental dental composites and investigated the effect of Cu-MBGN on the polymerisation properties. We prepared seven composites with a BisGMA/TEGDMA (60/40) matrix and 65 wt.% total filler content, added Cu-MBGN or a combination of Cu-MBGN and silanised silica to the silanised barium glass base, and examined nine parameters: light transmittance, degree of conversion (DC), maximum polymerisation rate (Rmax), time to reach Rmax, linear shrinkage, shrinkage stress (PSS), maximum PSS rate, time to reach maximum PSS rate, and depth of cure. Cu-MBGN without silica accelerated polymerisation, reduced light transmission, and had the highest DC (58.8 ± 0.9%) and Rmax (9.8 ± 0.2%/s), but lower shrinkage (3 ± 0.05%) and similar PSS (0.89 ± 0.07 MPa) versus the inert reference (0.83 ± 0.13 MPa). Combined Cu-MBGN and silica slowed the Rmax and achieved a similar DC but resulted in higher shrinkage. However, using a combined 5 wt.% Cu-MBGN and silica, the PSS resembled that of the inert reference. The synergistic action of 5 wt.% Cu-MBGN and silanised silica in combination with silanised barium glass resulted in a material with the highest likelihood for dental applications in future.


Subject(s)
Copper , Nanospheres , Composite Resins , Dental Materials , Kinetics , Materials Testing , Polymerization , Silicon Dioxide , Surface Properties
4.
Materials (Basel) ; 14(10)2021 May 17.
Article in English | MEDLINE | ID: mdl-34067788

ABSTRACT

Experimental dental resin composites incorporating copper-doped mesoporous bioactive glass nanospheres (Cu-MBGN) were designed to impart antibacterial and remineralizing properties. The study evaluated the influence of Cu-MBGN on the mechanical properties and photopolymerization of resin composites. Cu-MBGN were synthesized using a microemulsion-assisted sol-gel method. Increasing amounts of Cu-MBGN (0, 1, 5, and 10 wt %) were added to the organic polymer matrix with inert glass micro- and nanofillers while maintaining a constant resin/filler ratio. Six tests were performed: X-ray diffraction, scanning electron microscopy, flexural strength (FS), flexural modulus (FM), Vickers microhardness (MH), and degree of conversion (DC). FS and MH of Cu-MBGN composites with silica fillers showed no deterioration with aging, with statistically similar results at 1 and 28 days. FM was not influenced by the addition of Cu-MBGN but was reduced for all tested materials after 28 days. The specimens with 1 and 5% Cu-MBGN had the highest FS, FM, MH, and DC values at 28 days, while controls with 45S5 bioactive glass had the lowest FM, FS, and MH. DC was high for all materials (83.7-93.0%). Cu-MBGN composites with silica have a potential for clinical implementation due to high DC and good mechanical properties with adequate resistance to aging.

5.
Materials (Basel) ; 14(3)2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33494495

ABSTRACT

This study assessed the influence of rapid 3 s light curing on the new generation of bulk-fill resin composites under the simulated aging challenge and depths up to 4 mm. Four bulk-fill materials were tested: two materials designed for rapid curing (Tetric PowerFill-PFILL; Tetric PowerFlow-PFLW) and two regular materials (Filtek One Bulk Fill Restorative-FIL; SDR Plus Bulk Fill Flowable-SDR). Three-point bending (n = 10) was used to measure flexural strength (FS) and flexural modulus (FM). In the 3 s group, two 2 mm thick specimens were stacked to obtain 4 mm thickness, while 2 mm-thick specimens were used for ISO group. Specimens were aged for 1, 30, or 30 + 3 days in ethanol. The degree of conversion (DC) up to 4 mm was measured by Raman spectroscopy. There was no difference between curing protocols in FS after 1 day for all materials except PFLW. FM was higher for all materials for ISO curing protocol. Mechanical properties deteriorated by increasing depth (2-4 mm) and aging. ISO curing induced higher DC for PFLW and FIL, while 3 s curing was sufficient for PFILL and SDR. The 3 s curing negatively affected FM of all tested materials, whereas its influence on FS and DC was highly material-specific.

6.
Dent Traumatol ; 24(1): 108-11, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18173678

ABSTRACT

Single visit reconstruction of the fractured crown can be completed with composite resins if there is no bleeding due to the soft tissue injury. Clinical inspection revealed a complex crown fracture of the central incisor as well as a simple horizontal fracture of the lateral incisor crown of the enamel-dentin type. Vertical fracture separated the palatal enamel wall from the rest of the lateral incisor crown. After the completion of the endodontic sanitation, root canals were prepared for prefabricated composite posts and crown reconstructions were performed with the Finger Tip Technique by using composite resin materials. The advantage of this kind of reconstruction is preservation of the hard dental crown tissue removed in case of prosthetic therapy, especially in younger patients. Reconstruction can be finished in one visit, without the need for a dental technician and laboratory.


Subject(s)
Composite Resins , Incisor/injuries , Post and Core Technique , Tooth Fractures/therapy , Adult , Dental Bonding/methods , Dental Enamel/injuries , Dental Prosthesis Design , Dental Veneers , Dentin/injuries , Humans , Maxilla , Root Canal Therapy , Tooth Crown/injuries
7.
Oper Dent ; 32(3): 279-84, 2007.
Article in English | MEDLINE | ID: mdl-17555180

ABSTRACT

Under clinical conditions, the time needed for the proper light curing of luting composites or the multi-incremental buildup of a large restoration with halogen curing units is quite extensive. Due to the development of high power curing devices, such as argon lasers and plasma arc lights and, in order to decrease curing time, halogen and LED devices have developed a high intensity polymerization mode. This study compared the degree of conversion using Fourier Transform Infrared Spectroscopy (FT-IR) of two composite materials: Tetric Ceram and Tetric EvoCeram polymerized with three polymerization modes (high, low and soft mode) of a Bluephase 16i LED curing unit and blue diode laser intensity of 50 mW on the output of the laser beam and 35 mW/cm2 on the resin composite sample. Descriptive statistic, t-test, ANOVA, Pearson Correlation and Tukey Post hoc tests were used for statistical analyses. The results show a higher degree of conversion for the polymerization of composite samples with all photopolymerization modes of the LED curing unit. However, there is no significant difference in the degree of conversion between the LED unit and 50-second polymerization with the blue diode laser. Tetric EvoCeram shows a lower degree of conversion regardless of the polymerization mode (or light source) used.


Subject(s)
Composite Resins/radiation effects , Dental Equipment , Analysis of Variance , Lasers , Phase Transition , Semiconductors , Spectroscopy, Fourier Transform Infrared , Statistics, Nonparametric
SELECTION OF CITATIONS
SEARCH DETAIL
...