Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 34(48): e2108469, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35075681

ABSTRACT

The design, fabrication, and characterization of wafer-scale, zero-bias power detectors based on 2D MoS2 field-effect transistors (FETs) are demonstrated. The MoS2 FETs are fabricated using a wafer-scale process on 8 µm-thick polyimide film, which, in principle, serves as a flexible substrate. The performances of two chemical vapor deposition MoS2 sheets, grown with different processes and showing different thicknesses, are analyzed and compared from the single device fabrication and characterization steps to the circuit level. The power-detector prototypes exploit the nonlinearity of the transistors above the cut-off frequency of the devices. The proposed detectors are designed employing a transistor model based on measurement results. The fabricated circuits operate in the Ku-band between 12 and 18 GHz, with a demonstrated voltage responsivity of 45 V W-1 at 18 GHz in the case of monolayer MoS2 and 104 V W-1 at 16 GHz in the case of multilayer MoS2 , both achieved without applied DC bias. They are the best-performing power detectors fabricated on flexible substrate reported to date. The measured dynamic range exceeds 30 dB, outperforming other semiconductor technologies like silicon complementary metal-oxide-semiconductor circuits and GaAs Schottky diodes.

2.
Adv Mater ; 34(48): e2108473, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34957614

ABSTRACT

Over the past two decades, research on 2D materials has received much interest. Graphene is the most promising candidate regarding high-frequency applications thus far due to is high carrier mobility. Here, the research about the employment of graphene in micro- and millimeter-wave circuits is reviewed. The review starts with the different methodologies to grow and transfer graphene, before discussing the way graphene-based field-effect-transistors (GFETs) and diodes are built. A review on different approaches for realizing these devices is provided before discussing the employment of both GFETs and graphene diodes in different micro- and millimeter-wave circuits, showing the possibilities but also the limitations of this 2D material for high-frequency applications.

3.
Nanoscale ; 13(19): 8940-8947, 2021 May 20.
Article in English | MEDLINE | ID: mdl-33960339

ABSTRACT

Thickness-modulated lateral MoS2 diodes with an extracted benchmark cutoff frequency (fc) of up to 126 GHz are implemented and fully characterised. Fabricated diodes demonstrate an on-off current ratio of more than 600 and a short circuit current responsivity at zero-bias of 7 A/W. The excellent performance achieved in our device is attributed to reduced contact resistance from using In/Au contacts and low junction capacitance due to the lateral device structure. In addition, the use of multilayer MoS2 crystals enabled relatively high current flow. Small- and large-signal models are extracted from DC and RF characterisation of the fabricated diode prototype. Extracted compact models are compared to the measured DC and S-parameters of the diode, demonstrating excellent matching between models and measurements. The presented diode is suitable for switching circuits and high frequency applications.

4.
Nanoscale ; 10(1): 93-99, 2017 Dec 21.
Article in English | MEDLINE | ID: mdl-29210411

ABSTRACT

This work demonstrates a design approach which enables the fabrication of fully integrated radio frequency (RF) and millimetre-wave frequency direct-conversion graphene receivers by adapting the frontend architecture to exploit the state-of-the-art performance of the recently reported wafer-scale CVD metal-insulator-graphene (MIG) diodes. As a proof-of-concept, we built a fully integrated microwave receiver in the frequency range 2.1-2.7 GHz employing the strong nonlinearity and the high responsivity of MIG diodes to successfully receive and demodulate complex, digitally modulated communication signals at 2.45 GHz. In addition, the fabricated receiver uses zero-biased MIG diodes and consumes zero dc power. With the flexibility to be fabricated on different substrates, the prototype receiver frontend is fabricated on a low-cost, glass substrate utilising a custom-developed MMIC process backend which enables the high performance of passive components. The measured performance of the prototype makes it suitable for Internet-of-Things (IoT) and Radio Frequency Identification (RFID) systems for medical and communication applications.

5.
Nanoscale ; 9(33): 11944-11950, 2017 Aug 24.
Article in English | MEDLINE | ID: mdl-28792041

ABSTRACT

Vertical metal-insulator-graphene (MIG) diodes for radio frequency (RF) power detection are realized using a scalable approach based on graphene grown by chemical vapor deposition and TiO2 as barrier material. The temperature dependent current flow through the diode can be described by thermionic emission theory taking into account a bias induced barrier lowering at the graphene TiO2 interface. The diodes show excellent figures of merit for static operation, including high on-current density of up to 28 A cm-2, high asymmetry of up to 520, strong maximum nonlinearity of up to 15, and large maximum responsivity of up to 26 V-1, outperforming state-of-the-art metal-insulator-metal and MIG diodes. RF power detection based on MIG diodes is demonstrated, showing a responsivity of 2.8 V W-1 at 2.4 GHz and 1.1 V W-1 at 49.4 GHz.

SELECTION OF CITATIONS
SEARCH DETAIL
...