Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Oncol ; 33(10): 1029-1040, 2022 10.
Article in English | MEDLINE | ID: mdl-35872166

ABSTRACT

BACKGROUND: Allele-specific KRAS inhibitors are an emerging class of cancer therapies. KRAS-mutant (KRASMUT) non-small-cell lung cancers (NSCLCs) exhibit heterogeneous outcomes, driven by differences in underlying biology shaped by co-mutations. In contrast to KRASG12C NSCLC, KRASG12D NSCLC is associated with low/never-smoking status and is largely uncharacterized. PATIENTS AND METHODS: Clinicopathologic and genomic information were collected from patients with NSCLCs harboring a KRAS mutation at the Dana-Farber Cancer Institute (DFCI), Memorial Sloan Kettering Cancer Center, MD Anderson Cancer Center, and Imperial College of London. Multiplexed immunofluorescence for CK7, programmed cell death protein 1 (PD-1), programmed death-ligand 1 (PD-L1), Foxp3, and CD8 was carried out on a subset of samples with available tissue at the DFCI. Clinical outcomes to PD-(L)1 inhibition ± chemotherapy were analyzed according to KRAS mutation subtype. RESULTS: Of 2327 patients with KRAS-mutated (KRASMUT) NSCLC, 15% (n = 354) harbored KRASG12D. Compared to KRASnon-G12D NSCLC, KRASG12D NSCLC had a lower pack-year (py) smoking history (median 22.5 py versus 30.0 py, P < 0.0001) and was enriched in never smokers (22% versus 5%, P < 0.0001). KRASG12D had lower PD-L1 tumor proportion score (TPS) (median 1% versus 5%, P < 0.01) and lower tumor mutation burden (TMB) compared to KRASnon-G12D (median 8.4 versus 9.9 mt/Mb, P < 0.0001). Of the samples which underwent multiplexed immunofluorescence, KRASG12D had lower intratumoral and total CD8+PD1+ T cells (P < 0.05). Among 850 patients with advanced KRASMUT NSCLC who received PD-(L)1-based therapies, KRASG12D was associated with a worse objective response rate (ORR) (15.8% versus 28.4%, P = 0.03), progression-free survival (PFS) [hazard ratio (HR) 1.51, 95% confidence interval (CI) 1.45-2.00, P = 0.003], and overall survival (OS; HR 1.45, 1.05-1.99, P = 0.02) to PD-(L)1 inhibition alone but not to chemo-immunotherapy combinations [ORR 30.6% versus 35.7%, P = 0.51; PFS HR 1.28 (95%CI 0.92-1.77), P = 0.13; OS HR 1.36 (95%CI 0.95-1.96), P = 0.09] compared to KRASnon-G12D. CONCLUSIONS: KRASG12D lung cancers harbor distinct clinical, genomic, and immunologic features compared to other KRAS-mutated lung cancers and worse outcomes to PD-(L)1 blockade. Drug development for KRASG12D lung cancers will have to take these differences into account.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , B7-H1 Antigen , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Forkhead Transcription Factors , Genomics , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , Programmed Cell Death 1 Receptor , Proto-Oncogene Proteins p21(ras)/genetics
2.
Ann Oncol ; 33(1): 42-56, 2022 01.
Article in English | MEDLINE | ID: mdl-34653632

ABSTRACT

BACKGROUND: Despite the importance of tumor-infiltrating T lymphocytes (TILs) in cancer biology, the relationship between TIL phenotypes and their prognostic relevance for localized non-small-cell lung cancer (NSCLC) has not been well established. PATIENTS AND METHODS: Fresh tumor and normal adjacent tissue was prospectively collected from 150 patients with localized NSCLC. Tissue was comprehensively characterized by high-dimensional flow cytometry of TILs integrated with immunogenomic data from multiplex immunofluorescence, T-cell receptor sequencing, exome sequencing, RNA sequencing, targeted proteomics, and clinicopathologic features. RESULTS: While neither the magnitude of TIL infiltration nor specific TIL subsets were significantly prognostic alone, the integration of high-dimensional flow cytometry data identified two major immunotypes (IM1 and IM2) that were predictive of recurrence-free survival independent of clinical characteristics. IM2 was associated with poor prognosis and characterized by the presence of proliferating TILs expressing cluster of differentiation 103, programmed cell death protein 1, T-cell immunoglobulin and mucin-domain containing protein 3, and inducible T-cell costimulator. Conversely, IM1 was associated with good prognosis and differentiated by an abundance of CD8+ T cells expressing cytolytic enzymes, CD4+ T cells lacking the expression of inhibitory receptors, and increased levels of B-cell infiltrates and tertiary lymphoid structures. While increased B-cell infiltration was associated with good prognosis, the best prognosis was observed in patients with tumors exhibiting high levels of both B cells and T cells. These findings were validated in patient tumors from The Cancer Genome Atlas. CONCLUSIONS: Our study suggests that although the number of infiltrating T cells is not associated with patient survival, the nature of the infiltrating T cells, resolved in distinct TIL immunotypes, is prognostically relevant in NSCLC and may inform therapeutic approaches to clinical care.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , CD8-Positive T-Lymphocytes , Carcinoma, Non-Small-Cell Lung/pathology , Humans , Lung Neoplasms/pathology , Lymphocytes, Tumor-Infiltrating/pathology , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...