Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Neural Eng ; 17(1): 016060, 2020 02 18.
Article in English | MEDLINE | ID: mdl-31945751

ABSTRACT

OBJECTIVE: Adapted from the concept of channel capacity, the information transfer rate (ITR) has been widely used to evaluate the performance of a brain-computer interface (BCI). However, its traditional formula considers the model of a discrete memoryless channel in which the transition matrix presents very particular symmetries. As an alternative to compute the ITR, this work indicates a more general closed-form expression-also based on that channel model, but with less restrictive assumptions-and, with the aid of a selection heuristic based on a wrapper algorithm, extends such formula to detect classes that deteriorate the operation of a BCI system. APPROACH: The benchmark is a steady-state visually evoked potential (SSVEP)-based BCI dataset with 40 frequencies/classes, in which two scenarios are tested: (1) our proposed formula is used and the classes are gradually evaluated in the order of the class labels provided with the dataset; and (2) the same formula is used but with the classes evaluated progressively by a wrapper algorithm. In both scenarios, the canonical correlation analysis (CCA) is the tool to detect SSVEPs. MAIN RESULTS: Before and after class selection using this alternative ITR, the average capacity among all subjects goes from 3.71 [Formula: see text] 1.68 to 4.79 [Formula: see text] 0.70 bits per symbol, with p -value <0.01, and, for a supposedly BCI-illiterate subject, her/his capacity goes from 1.53 to 3.90 bits per symbol. SIGNIFICANCE: Besides indicating a consistent formula to compute ITR, this work provides an efficient method to perform channel assessment in the context of a BCI experiment and argues that such method can be used to study BCI illiteracy.


Subject(s)
Brain-Computer Interfaces , Electroencephalography/methods , Evoked Potentials, Visual/physiology , Signal Processing, Computer-Assisted , Brain-Computer Interfaces/psychology , Databases, Factual , Humans , Photic Stimulation/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...