Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
2.
Molecules ; 26(17)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34500578

ABSTRACT

Platinum is a main catalyst for the electroreduction of oxygen, a reaction of primary importance to the technology of low-temperature fuel cells. Due to the high cost of platinum, there is a need to significantly lower its loadings at interfaces. However, then O2-reduction often proceeds at a less positive potential, and produces higher amounts of undesirable H2O2-intermediate. Hybrid supports, which utilize metal oxides (e.g., CeO2, WO3, Ta2O5, Nb2O5, and ZrO2), stabilize Pt and carbon nanostructures and diminish their corrosion while exhibiting high activity toward the four-electron (most efficient) reduction in oxygen. Porosity of carbon supports facilitates dispersion and stability of Pt nanoparticles. Alternatively, the Pt-based bi- and multi-metallic catalysts, including PtM alloys or M-core/Pt-shell nanostructures, where M stands for certain transition metals (e.g., Au, Co, Cu, Ni, and Fe), can be considered. The catalytic efficiency depends on geometric (decrease in Pt-Pt bond distances) and electronic (increase in d-electron vacancy in Pt) factors, in addition to possible metal-support interactions and interfacial structural changes affecting adsorption and activation of O2-molecules. Despite the stabilization of carbons, doping with heteroatoms, such as sulfur, nitrogen, phosphorus, and boron results in the formation of catalytically active centers. Thus, the useful catalysts are likely to be multi-component and multi-functional.

3.
J Am Chem Soc ; 142(2): 801-814, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31840519

ABSTRACT

The electrical relaxation and polarization phenomena of electrospun PVDF (P)/Nafion (N) blended fiber mats ([P/N0.9]M and ß-[P]M) and membranes ([P/N0.9]MM) are compared with those of the solvent-cast membrane of identical composition ([N]C and [P/N0.9]C). The nature of the interactions between the two blended polymer components, that plays a pivotal role in the electrical nature of the resulting materials, is found to be governed by the fabrication method, with those materials obtained via electrospinning undergoing a "reciprocal templating" phenomenon that renders their electrical behavior (especially when in the dry state) significantly different from that of the blended membrane obtained via solvent casting. Broadband Electrical Spectroscopy (BES) demonstrates that the electric response of the blended materials is modulated by polarization phenomena and by α, ß, and γ dielectric relaxation events of Nafion domains supported on ß-PVDF. The coupling between the relaxations of ß-PVDF with those of Nafion matrix is directly correlated to the "reciprocal templating" effect, which modulates the interactions between Nafion and PVDF in electrospun membranes. Two types of conductivity mechanisms characterize the H+ migration within the polymer blends: (1) interdomain H+ migration events by "charge-exchange" phenomena along percolation pathways and (2) H+ exchange between delocalization bodies (DBs) at binding sites at the interface between domains with different ε, size, and morphology. The electrical response of the electrospun membranes also suggests that they do not comprise water clusters with a large size such as those typically observed in pristine Nafion. Rather, the adsorbed H2O molecules, under wet conditions, form thin solvation shells wrapping the polar side chains of the Nafion component. At T = 80 °C, the conductivity of the studied materials decreases in the order [N]C (0.043 S·cm-1) ≈ [P/N0.9]C (0.042 S·cm-1) > [P/N0.9]M (0.031 S·cm-1) > [P/N0.9]MM (0.011 S·cm-1).

4.
Phys Chem Chem Phys ; 18(4): 2369-78, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26700822

ABSTRACT

Dielectric properties of polyurethanes containing poly(propylene oxide) (PO) and poly(ethylene oxide) (EO) units are discussed, along with the results of direct current (DC) measurements and broadband electrical spectroscopy (BES) studies. The dielectric properties of polyether-containing polyurethanes (PUs) are compared to those of PUs containing 1000 ppm of ionic liquids (ILs) as antistatic agents. The effects of the chemical environment of these ILs, including anion-fixed polymers (PU-AF), cation-fixed polymers (PU-CF), and a simple mixture of IL with the PUs (PU-IL), are compared and discussed on the basis of ion mobility. DC measurements suggest that the charge current is attributed not only to the electrode polarization but also to continuous dielectric relaxation. BES studies elucidate that both fast and slow relaxations are taking place in EO-rich domains in pristine PU and PU-AF. The activation energies of the slow relaxation and of the ionic conductivity are similar, suggesting that the ionic conductivity of these materials is attributed to the ion exchange reaction in EO/ion complexes. In contrast, only fast relaxations are observed in the domains mostly comprised of ion-depleted EO in the PUs containing "free" anions, i.e., PU-CF and PU-IL. This suggests that [Tf2N](-) ligands are weakly interacting with the EO chains and contribute effectively to the ion conduction. Thus, enhanced ionic conductivity is observed in PU-CF and PU-IL, yielding sufficient antistatic effects. Taking into account its long shelf life, arising from the lack of IL bleed-out, PU-CF is concluded to be the most promising candidate.

5.
ChemSusChem ; 8(18): 3069-76, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26333149

ABSTRACT

A critical roadblock toward practical Mg-based energy storage technologies is the lack of reversible electrolytes that are safe and electrochemically stable. Here, we report on high-performance electrolytes based on 1-ethyl-3-methylimidazolium chloride (EMImCl) doped with AlCl3 and highly amorphous δ-MgCl2 . The phase diagram of the electrolytes reveals the presence of four thermal transitions that strongly depend on salt content. High-level density functional theory (DFT)-based electronic structure calculations substantiate the structural and vibrational assignment of the coordination complexes. A 3D chloride-concatenated dynamic network model accounts for the outstanding redox behaviour and the electric and magnetic properties, providing insight into the conduction mechanism of the electrolytes. Mg anode cells assembled using the electrolytes were cyclically discharged at a high rate (35 mA g(-1) ), exhibiting an initial capacity of 80 mA h g(-1) and a steady-state voltage of 2.3 V.

6.
ChemSusChem ; 8(8): 1381-93, 2015 Apr 24.
Article in English | MEDLINE | ID: mdl-25801848

ABSTRACT

Owing to the numerous benefits obtained when operating proton exchange membrane fuel cells at elevated temperature (>100 °C), the development of thermally stable proton exchange membranes that demonstrate conductivity under anhydrous conditions remains a significant goal for fuel cell technology. This paper presents composite membranes consisting of poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI4N) impregnated with a ZrO2 nanofiller of varying content (ranging from 0 to 22 wt %). The structure-property relationships of the acid-doped and undoped composite membranes have been studied using thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, wide-angle X-ray scattering, infrared spectroscopy, and broadband electrical spectroscopy. Results indicate that the level of nanofiller has a significant effect on the membrane properties. From 0 to 8 wt %, the acid uptake as well as the thermal and mechanical properties of the membrane increase. As the nanofiller level is increased from 8 to 22 wt % the opposite effect is observed. At 185 °C, the ionic conductivity of [PBI4N(ZrO2 )0.231 ](H3 PO4 )13 is found to be 1.04×10(-1)  S cm(-1) . This renders membranes of this type promising candidates for use in high-temperature proton exchange membrane fuel cells.


Subject(s)
Benzimidazoles/chemistry , Electric Power Supplies , Membranes, Artificial , Nanocomposites/chemistry , Polymers/chemistry , Protons , Temperature , Zirconium/chemistry , Electrochemistry , Mechanical Phenomena , Models, Molecular , Molecular Conformation , Nanoparticles/chemistry , Phosphoric Acids/chemistry
7.
Phys Chem Chem Phys ; 15(39): 16626-33, 2013 Oct 21.
Article in English | MEDLINE | ID: mdl-23963202

ABSTRACT

The composite material P(EO/EM)-Sa consisting of synthetic saponite (Sa) dispersed in poly[ethylene oxide-co-2-(2-methoxyethoxy)ethyl glycidyl ether] (P(EO/EM)) is studied by "in situ" measurements using broadband electrical spectroscopy (BES) under pressurized CO2 to characterize the dynamic behavior of conductivity and the dielectric relaxations of the ion host polymer matrix. It is revealed that there are three dielectric relaxation processes associated with: (I) the dipolar motions in the short oxyethylene side chains of P(EO/EM) (ß); and (II) the segmental motion of the main chains comprising the polyether components (αfast, αslow). αslow is attributed to the slow α-relaxation of P(EO/EM) macromolecules, which is hindered by the strong coordination interactions with the ions. Two conduction processes are observed, σDC and σID, which are attributed, respectively, to the bulk conductivity and the interdomain conductivity. The temperature dependence of conductivity and relaxation processes reveals that αfast and αslow are strongly correlated with σDC and σID. The "in situ" BES measurements under pressurized CO2 indicate a fast decrease in σDC at the initial CO2 treatment time resulting from the decrease in the concentration of polyether-M(n+) complexes, which is driven by the CO2 permeation. The relaxation frequency (fR) of αslow at the initial CO2 treatment time increases and shows a steep rise with time with the same behavior of the αfast mode. It is demonstrated that the interactions between polyether chains of P(EO/EM) and cations in the polymer electrolyte layers embedded in Sa are probably weakened by the low permittivity of CO2 (ε = 1.08). Thus, the formation of ion pairs in the polymer electrolyte domains of P(EO/EM)-Sa occurs, with a corresponding reduction in the concentration of ion carriers.

8.
Chemistry ; 19(28): 9381-7, 2013 Jul 08.
Article in English | MEDLINE | ID: mdl-23728964

ABSTRACT

Hyper-cross-linked resins stemming from a gel-type poly-chloromethylated poly(styrene-co-divinylbenzene) resin (GT) have been investigated by a multi-methodological approach based on elemental analysis, scanning electron microscopy, X-ray microanalysis, and solvent absorption. The hyper-cross-linking of the parent resin was accomplished by Friedel-Crafts alkylation of the phenyl rings of the resins with the chloromethyl groups. This produced a permanent pore system comprising both micropores (<2.0 nm in diameter) and mesopores (2.2 nm). The chloromethyl groups that did not react in the hyper-cross-linking step were transformed into methylmercaptan groups and the latter were then converted into sulfonic groups by oxidation with hydrogen peroxide. By this procedure the extensive permanent porosity of the parent unsulfonated hyper-cross-linked polymer (HGT) was retained by the sulfonated polymer (HGTS). The final exchange capacity of HGTS was determined to be 0.36 mmol g(-1). HGTS was easily metalated with Pd(II) and the subsequent reduction of the metal centers with either aqueous sodium borohydride, formaldehyde, or dihydrogen produced three Pd(0)/HGTS nanocomposites. The metal nanoparticles had diameters in the 1-6 nm range for all the nanocomposites, as determined by TEM, but with somewhat different distributions. When formaldehyde was used, more than 90% of the nanoparticles were less than 3 nm and their radial distribution throughout the polymer beads was quite homogeneous. These findings show that with this reducing agent the metal nanoparticles are generated within the pore system of the polymer matrix, hence their size is controlled by the dimensions of the pores of the polymeric support.

9.
ChemSusChem ; 5(12): 2451-9, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23019172

ABSTRACT

An extensive morphological and structural study of two bimetallic "core-shell" carbon nitride nano-electrocatalysts with active sites based on Pt and Ni or on Pt and Fe is reported. The core-shell electrocatalysts are obtained by the pyrolysis of a precursor obtained by decorating a support composed of conducting particles with a hybrid inorganic-organic material. The electrocatalysts were investigated by high-resolution TEM, powder X-ray diffraction, and µ-Raman spectroscopy. The morphological and structural information presented here provides 1) insight into the microscopic features, affecting the electrochemical performance of the electrocatalyst materials determined in both ex situ measurements and single-cell configurations; and 2) an opportunity to study the effect of the different precursor chemistries on the structure and morphology of the bimetallic core-shell carbon nitride nano-electrocatalysts.


Subject(s)
Iron/chemistry , Metal Nanoparticles/chemistry , Nickel/chemistry , Nitriles/chemical synthesis , Platinum/chemistry , Catalysis , Electrochemical Techniques , Microscopy, Electron, Transmission , Nitriles/chemistry , Spectrum Analysis, Raman , Surface Properties , X-Ray Diffraction
10.
ChemSusChem ; 5(9): 1758-66, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22807005

ABSTRACT

Two types of new nanocomposite proton-exchange membranes, consisting of functionalized and pristine nanoparticles of silica and silicone rubber (SR) embedded in a polytetrafluoroethylene (PTFE) matrix, were prepared. The membrane precursor was obtained from a mechanical rolling process, and the SiO2 nanoparticles were functionalized by soaking the membranes in a solution of 2-(4-chlorosulfonylphenyl)ethyl trichlorosilane (CSPhEtCS). The membranes exhibit a highly compact morphology and a lack of fibrous PTFE. At 125 °C, the membrane containing the functionalized nanoparticles has an elastic modulus (2.2 MPa) that is higher than that of pristine Nafion (1.28 MPa) and a conductivity of 3.6×10⁻³  S cm⁻¹ despite a low proton-exchange capacity (0.11 meq g⁻¹). The good thermal and mechanical stability and conductivity at T>100 °C make these membranes a promising low-cost material for application in proton-exchange membrane fuel cells operating at temperatures higher than 100 °C.


Subject(s)
Membranes, Artificial , Nanocomposites/chemistry , Polytetrafluoroethylene/chemistry , Protons , Silicon Dioxide/chemistry , Mechanical Phenomena , Porosity , Silicone Elastomers/chemistry , Temperature , Water/chemistry
11.
J Am Chem Soc ; 132(7): 2183-95, 2010 Feb 24.
Article in English | MEDLINE | ID: mdl-20102239

ABSTRACT

In this report, the electrical performance at T > 100 degrees C and low relative humidity of proton-conducting Nafion-based membranes was improved by preparing new materials based on Nafion 117 (N117) neutralized with triethylammonium (TEA(+)) and doped with the ionic liquid (IL) trifluoromethanesulfonate of triethylammonium (TEA-TF). In particular, a new two-step protocol for the preparation of [N117(x-)(TEA(+))(x)/(TEA-TF)(y)] is proposed. [N117(x-)(TEA(+))(x)/(TEA-TF)(y)] membrane is composed of ca. 30 wt % of TEA-TF. The structure of the different nanophases composing the materials and their interactions were investigated by FT-IR ATR and micro-Raman spectroscopy. The thermal stability, water uptake, and mechanical properties of the membranes were studied by thermogravimetric analysis and dynamic mechanical analysis measurements. With respect to pristine N117, the thermal and mechanical properties of the proposed materials were improved. The electric response of [N117(x-)(TEA(+))(x)/(TEA-TF)(y)] was studied by broad band dielectric spectroscopy in the frequency range from 10(-2) Hz to 10 MHz and for temperatures between 5 and 155 degrees C. In comparison to the N117 reference, the following was observed: (a) the stability range of conductivity (SRC) of the [N117(x-)(TEA(+))(x)] membrane increases up to 155 degrees C, while its sigma(DC) at T = 100 degrees C is lowered by ca. 2 orders of magnitude; (b) the SRC of [N117(x-)(TEA(+))(x)/(TEA-TF)(y)] is similar to that of [N117(x-)(TEA(+))(x)], while the sigma(DC) at 145 degrees C decreases in the order 7.3 x 10(-3) > 6.1 x 10(-3) > 9.7 x 10(-4) S x cm(-1) for [N117(x-)(TEA(+))(x)/(TEA-TF)(y)], N117, and [N117(x-)(TEA(+))(x)] membranes, respectively. In conclusion, the lower water uptake, the improved thermal and mechanical stability, and the good conductivity make [N117(x-)(TEA(+))(x)/(TEA-TF)(y)] a promising membrane to improve for application in proton exchange membrane fuel cells operating under anhydrous conditions at T > 100 degrees C.

12.
Chem Commun (Camb) ; (45): 7006-8, 2009 Dec 07.
Article in English | MEDLINE | ID: mdl-19904376

ABSTRACT

Time-resolved EPR spectra of UV-irradiated Nafion reveal the formation of spin-polarized excited triplet states and allow the detection of photoinduced triplet-triplet energy transfer processes through hydrogen bonds between water and sulfonic acid groups.

13.
J Phys Chem B ; 113(3): 632-9, 2009 Jan 22.
Article in English | MEDLINE | ID: mdl-19113878

ABSTRACT

The structure and interactions of water species in hydrated Nafion membranes as a function of water content were investigated on the basis of medium-infrared spectral analysis and molecular dynamics (MD) simulations. The spectral decomposition of the FT-IR data in the stretching OH region was performed on different levels of hydration of the sulfate functional groups (lambdaH2O/RSO3- = 2-22). Quantum mechanical calculations of two model systems [perfluoroethanesulfonic acid/(H2O)6 cluster] and a [perfluorobutanesulfonic acid/(H2O)6 crystal] were carried out in order to account for the band assignments of Nafion in the stretching OH region (2500-4000 cm-1). Our findings indicated that the secondary structure of water species in Nafion can be accurately explained in terms of our reactive force field for water. The distinction between "surface" and "bulk" water contributions in Nafion membrane pores is proposed along with a quantitative estimate of the different types of OH groups present in the system. The average pore size was calculated and supported by the spectral results.

14.
J Phys Chem B ; 112(51): 16590-600, 2008 Dec 25.
Article in English | MEDLINE | ID: mdl-19032059

ABSTRACT

In this report, we will describe the effect of different concentrations of HfO2 nanopowders on the structure and properties of [Nafion/(HfO2)n] membranes with n = 0, 3, 5, 9, 11, 13, and 15 wt %, respectively. Films were prepared by a solvent casting procedure using HfO2 oxoclusters and Nafion. Seven new homogeneous membranes were obtained with thicknesses ranging from 200 to 350 microm. Each membrane is characterized by a rough HfO2-rich surface and a smooth Nafion-rich surface, with different physical-chemical properties. Membrane characterization was accomplished by means of thermogravimetric analysis (TGA), morphological measurements (environmental scanning electron microscopy) and vibrational spectroscopy (Fourier transform infrared attenuated total reflectance spectroscopy and Fourier transform Raman spectroscopy). These systems can be described in terms of five types of water domains, Nafion-HfO2 species with well-defined stoichiometry surrounded by Nafion and hydrated hafnia. The highest conductivity at 125 degrees C (3.2 x 10-2 S x cm(-1)) was measured on the [Nafion/(HfO2)5] film by electrical spectroscopy, with a stability range of conductivity between 5 and 115 degrees C.

15.
J Phys Chem B ; 110(49): 24972-86, 2006 Dec 14.
Article in English | MEDLINE | ID: mdl-17149919

ABSTRACT

This report describes a study of the effect of SiO2 nanopowders on the mechanism of ionic motion and interactions taking place in hybrid inorganic-organic membranes based on Nafion. Five nanocomposite membranes of the formula [Nafion/(SiO2)x] with SiO2 ranging from 0 to 15 wt % were prepared by a solvent casting procedure. TG measurements demonstrated that the membranes are thermally stable up to 170 degrees C but with the loss water it changes the cluster environments and changes the conductivity properties. MDSC investigations in the 90-300 degrees C temperature range revealed the presence of three intense overlapping endothermal peaks indicated as I, II, and III. Peak I measures the order-disorder molecular rearrangement in hydrophilic polar clusters, II corresponds to the endothermic decomposition of -SO3 groups, and III describes the melting process in microcrystalline regions of hydrophobic fluorocarbon domains of the Nafion moiety. ESEM with EDAX measurements revealed that the membranes are homogeneous materials with smooth surfaces. DMA studies allowed us to measure two relaxation modes. The mechanical relaxation detected at ca. 100 degrees C is attributed to the motion of cluster aggregates of side chains and is diagnostic for R-SO3H...SiO2 nanocluster interactions. DMA disclosed that at SiO2/-SO3H (psi) molar ratios lower than 1.9, the oxoclusters act to restrict chain mobility of hydrophobic domains of Nafion and the dynamics inside polar cages of [Nafion/(SiO2)x] systems; at psi higher than 1.9, the oxoclusters reduce the cohesiveness of hydrophilic polar domains owing to a reduction in the density of cross-links. FT-IR and FT-Raman studies of the [Nafion/(SiO2)x] membranes indicated that the fluorocarbon chains of Nafion hydrophobic domains assume the typical helical conformation structure with a D(14pi/15) symmetry. These analyses revealed four different species of water domains embedded inside polar cages and their interconnecting channels: (a) bulk water [(H2O)n]; (b) water solvating the oxonium ions directly interacting with sulfonic acid groups [H3O+...SO3(-)-].(H2O)n; (c) water aggregates associated with H3O+ ions [H3O+.(H2O)n]; and (d) low associated water species in dimer form [(H2O)2]. The conductivity mechanism and relaxation events were investigated by broadband dielectric spectroscopy (BDS). [Nafion/(SiO2)x] nanocomposite membranes were found to possess two different molecular relaxation phenomena which are associated with the alpha-relaxation mode of PTFE-like fluorocarbon domains and the beta-relaxation mode of acid side groups of the Nafion component. Owing to their strong coupling, both these relaxation modes are diagnostic for the interactions between the polar groups of the Nafion host polymer and the (SiO2)x oxoclusters and play a determining role in the conductivity mechanism of the membranes. The studies support the proposal that long-range proton charge transfer in [Nafion/(SiO2)x] composites takes place due to a mechanism involving exchange of the proton between the four water domains. This latter proton transfer occurs owing to a subsequent combination of domain intersections resulting from the water domain fluctuations induced by the molecular relaxation events of host Nafion polymer.

SELECTION OF CITATIONS
SEARCH DETAIL
...