Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Biochem Biotechnol ; 137-140(1-12): 353-65, 2007 Apr.
Article in English | MEDLINE | ID: mdl-18478401

ABSTRACT

In this study, different enzyme preparations available from Novozymes were assessed for their efficiency to hydrolyze lignocellulosic materials. The enzyme mixture was evaluated on a pretreated cellulose-rich material, and steam-exploded barley straw pretreated under different temperatures (190, 200, and 210 degrees C, respectively) in order to produce fermentable sugars. Results show that xylanase supplementation improves initial cellulose hydrolysis effectiveness of water-insoluble solid fraction from all steam-exploded barley straw samples, regardless of the xylan content of substrate. The mixture constituted by cellulase: beta-glucosidase: endoxylanase of the new kit for lignocellulose conversion at a ratio 10:1:5% ([v/w], enzyme [E]/substrate [S]) provides the highest increment of cellulose conversion in barley straw pretreated at 210 degrees C, for 10 min.


Subject(s)
Cellulose/chemistry , Endo-1,4-beta Xylanases/chemistry , Hordeum/chemistry , Plant Components, Aerial/chemistry , Hydrolysis
2.
Biotechnol Prog ; 20(3): 715-20, 2004.
Article in English | MEDLINE | ID: mdl-15176873

ABSTRACT

The inhibitory effects of various lignocellulose degradation products on glucose fermentation by the thermotolerant yeast Kluyveromyces marxianus were studied in batch cultures. The toxicity of the aromatic alcohol catechol and two aromatic aldehydes (4-hydroxybenzaldehyde and vanillin) was investigated in binary combinations. The aldehyde furfural that usually is present in relatively high concentration in hydrolyzates from pentose degradation was also tested. Experiments were conducted by combining agents at concentrations that individually caused 25% inhibition of growth. Compared to the relative toxicity of the individual compounds, combinations of furfural with catechol and 4-hydroxybenzaldehyde were additive (50% inhibition of growth). The other binary combinations assayed (catechol with 4-hydroxybenzaldehyde, and vanillin with catechol, furfural, or 4-hydroxybenzaldehyde) showed synergistic effect on toxicity and caused a 60-90% decrease in cell mass production. The presence of aldehydes in the fermentation medium strongly inhibited cell growth and ethanol production. Kluyveromyces marxianus reduces aldehydes to their corresponding alcohols to mitigate the toxicity of these compounds. The total reduction of aldehydes was needed to start ethanol production. Vanillin, in binary combination, was dramatically toxic and was the only compound for which inhibition could not be overcome by yeast strain assimilation, causing a 90% reduction in both cell growth and fermentation.


Subject(s)
Benzaldehydes/pharmacology , Catechols/pharmacology , Ethanol/metabolism , Furaldehyde/pharmacology , Kluyveromyces/drug effects , Kluyveromyces/physiology , Cell Proliferation/drug effects , Drug Combinations , Drug Synergism , Fermentation/drug effects , Fermentation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...