Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr A ; 1496: 105-114, 2017 May 05.
Article in English | MEDLINE | ID: mdl-28365074

ABSTRACT

Humic substances have a tendency to form complexes with metal ions in aquatic medium, impacting the metal mobility, decreasing bioavailability and toxicity. Ultraviolet-B (UV-B) radiation exposure degrades the humic substance, changes their molecular weight distribution and their metal binding capacity in aquatic medium. In this study, we experimented the effect of UV-B radiation on the uranium complexed with fulvic acids and humic acids in a soft water system at different pH, uranium concentrations and radiant exposure. The concentration and distribution of uranium in a complexed form were investigated by asymmetrical flow field-flow fractionation coupled to multi detection technique (AsFlFFF-UV-ICP-MS). The major concentration of uranium present in complexes was primarily associated with average and higher molecular weight fulvic and humic acids components. The concentration of uranium in a complexed form increased with increasing fulvic and humic acid concentrations as well as pH of the solution. The higher molecular weight fraction of uranium was degraded due to the UV-B exposure, transforming about 50% of the uranium-dissolved organic carbon complexes into low molecular weight uranium species in complex form with organic ligands and/or free form. The result also suggests AsFlFFF-UV-ICP-MS to be an important separation and detection technique for understanding the interaction of radionuclides with dissolved organic matter, tracking size distribution changes during degradation of organic complexes for understanding mobility, bioavailability and ecosystem transfer of radionuclides as well as metals.


Subject(s)
Carbon/chemistry , Fractionation, Field Flow/methods , Uranium/chemistry , Benzopyrans/chemistry , Humic Substances/analysis , Hydrogen-Ion Concentration , Mass Spectrometry , Molecular Weight , Ultraviolet Rays
2.
J Chromatogr A ; 1217(27): 4623-8, 2010 Jul 02.
Article in English | MEDLINE | ID: mdl-20537343

ABSTRACT

Asymmetrical flow field-flow fractionation (AsFlFFF) was coupled online with multiangle light scattering (MALS) to study the changes in the molecular weight and the size distribution of the corn starch during carboxymethylation. A corn starch was derivatized with sodium chloroacetate in alcoholic medium under alkaline condition to produce carboxymethyl starches (CMS) having various degrees of substitution (DS). The change in thermal characteristics and granule structure of the native corn starch and CMS were compared using Thermogravimetric analysis and scanning electron microscope. The ionic strength of the carrier liquid (water with 0.02% NaN(3)) was optimized by adding 50mM NaNO(3) to minimize the interactions among the starch molecules and between the starch molecules and the AsFlFFF membrane. A field-programmed AsFlFFF allowed determination of the molecular weight distribution (MWD) of starches within about 25min. It was found that carboxymethylation of starch results in reduction in the molecular weight due to molecular degradation by the alkaline treatment. The weight-average molecular weight (M(w)) was reduced down to about 4.4x10(5) from about 7.2x10(6) when DS was 0.14. It seems AsFlFFF coupled with MALS (AsFlFFF/MALS) is a useful tool for monitoring the changes taking place in the molecular weight and the size of starch during derivatization.


Subject(s)
Fractionation, Field Flow/methods , Light , Scattering, Radiation , Starch/chemistry , Methylation , Microscopy, Electron, Scanning , Molecular Weight , Nitrates/chemistry , Nitrogen/chemistry , Spectroscopy, Fourier Transform Infrared , Temperature , Thermogravimetry
3.
Anal Bioanal Chem ; 396(4): 1581-8, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20016877

ABSTRACT

Polyamidoamine (PAMAM) dendrimers have an amine surface and an ethylenediamine core and are of great interest in various applications such as in drug delivery. Physiochemical properties of PAMAM dendrimers vary with pH. At neutral to basic pH, PAMAM dendrimers are either weakly charged or uncharged and tend to adsorb on to the neutral packing material, making chromatographic separation of the dendrimers difficult. Asymmetrical flow field-flow fractionation (AsFlFFF) was tested as an alternative to the chromatographic techniques for separation of the PAMAM dendrimers. AsFlFFF provided generation-based separation of the dendrimers even at neutral and basic pH. The elution time increased gradually as the generation number (and thus the size) increased. Separation of impurities such as generational or missing-arm impurities and aggregates from the main population was also achieved. Electrostatic and hydrophobic interactions (e.g., repulsive elecrostatic interaction among the dendrimer molecules or attractive hydrophobic interaction between the dendrimer molecules and the membrane) may result in an inaccurate size measurement. Careful optimization of experimental conditions such as the flow rate, pH, and the salt concentration may be required to minimize the interactions with the membrane. AsFlFFF was also tested for a study on the interaction between the PAMAM dendrimers and proteins. AsFlFFF was able to show the growth in the size of bovine serum albumin (BSA) when BSA is mixed with increasing amounts of PAMAM dendrimers. Results suggest that, with proper optimization, AsFlFFF could become a useful tool for separation and characterization of large charged molecules such as PAMAM dendrimers.


Subject(s)
Amides/chemistry , Dendrimers/chemistry , Fractionation, Field Flow/methods , Polyamines/chemistry , Serum Albumin, Bovine/chemistry , Animals , Cattle
SELECTION OF CITATIONS
SEARCH DETAIL
...