Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 10(3)2020 Mar 19.
Article in English | MEDLINE | ID: mdl-32204428

ABSTRACT

Nanodiamonds of detonation origin are promising delivery agents of anti-cancer therapeutic compounds in a whole organism like mouse, owing to their versatile surface chemistry and ultra-small 5 nm average primary size compatible with natural elimination routes. However, to date, little is known about tissue distribution, elimination pathways and efficacy of nanodiamonds-based therapy in mice. In this report, we studied the capacity of cationic hydrogenated detonation nanodiamonds to carry active small interfering RNA (siRNA) in a mice model of Ewing sarcoma, a bone cancer of young adults due in the vast majority to the EWS-FLI1 junction oncogene. Replacing hydrogen gas by its radioactive analog tritium gas led to the formation of labeled nanodiamonds and allowed us to investigate their distribution throughout mouse organs and their excretion in urine and feces. We also demonstrated that siRNA directed against EWS-FLI1 inhibited this oncogene expression in tumor xenografted on mice. This work is a significant step to establish cationic hydrogenated detonation nanodiamond as an effective agent for in vivo delivery of active siRNA.

2.
Nanoscale ; 11(16): 8027-8036, 2019 Apr 23.
Article in English | MEDLINE | ID: mdl-30964938

ABSTRACT

We report here on a robust and easy-to-implement method for the labelling of detonation nanodiamonds (DND) with hydrogen isotopes (deuterium and tritium), using thermal annealing performed in a closed system. With this method, we have synthesized and fully characterized (FTIR, Raman, DLS, 3H/2H/1H and 13C MAS NMR) deuterium-treated and tritium-treated DND and demonstrated the usefulness of isotope incorporation in investigating the surface chemistry of such nanomaterials. For instance, surface treatment with deuterium coupled to FTIR spectroscopy allowed us to discriminate the origin of C-H terminations at the DND surface after the hydrogenation process. As a complementary, tritium appeared very useful for quantification purposes, while 1,2,3H NMR confirmed the nature of the C-1,2,3H bonds created. This isotopic study provides new insights into the characteristics of hydrogen-treated DND.

3.
Adv Drug Deliv Rev ; 138: 233-246, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30414493

ABSTRACT

Magnetic hyperthermia which exploits the heat generated by magnetic nanoparticles (MNPs) when exposed to an alternative magnetic field (AMF) is now in clinical trials for the treatment of cancers. However, this thermal therapy requires a high amount of MNPs in the tumor to be efficient. On the contrary the hot spot local effect refers to the use of specific temperature profile at the vicinity of nanoparticles for heating with minor to no long-range effect. This magneto-thermal effect can be exploited as a relevant external stimulus to temporally and spatially trigger drug release. In this review, we focus on recent advances in magnetic hyperthermia. Indirect experimental proofs of the local temperature increase are first discussed leading to a good estimation of the temperature at the surface (from 0.5 to 6 nm) of superparamagnetic NPs. Then we highlight recent studies illustrating the hot-spot effect for drug-release. Finally, we present another recent strategy to enhance the efficacity of thermal treatment by combining photothermal therapy with magnetic hyperthermia mediated by magneto-plasmonic nanoplatforms.


Subject(s)
Drug Delivery Systems , Hyperthermia, Induced , Magnetic Fields , Nanoparticles/administration & dosage , Animals , Hot Temperature , Humans
4.
Chemistry ; 19(26): 8388-92, 2013 Jun 24.
Article in English | MEDLINE | ID: mdl-23744751

ABSTRACT

A light click away: The first application of the thiol-yne reaction to nanoparticle functionalization is described (see figure). This metal-free click chemistry approach is compatible with the addition of various molecules at the surface and can be combined with CuAAC methodology to perform chemoselective double functionalization.


Subject(s)
Alkynes/chemistry , Nanoparticles/chemistry , Sulfhydryl Compounds/chemistry , Ultraviolet Rays , Click Chemistry , Ferric Compounds/chemistry , Surface Properties
5.
Langmuir ; 28(51): 17795-802, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23231028

ABSTRACT

A new type of photoinitiator for free radical polymerization was synthesized and characterized. 2-(11-Mercaptoundecyloxy)thioxanthone (1) was anchored at the surface of silver nanoparticles (NPs), and the interaction of plasmon field generated in the immediate vicinity of Ag NPs carrying the chromophores was evaluated. The optical features and structure of the silver-initiator nanoassemblies (Ag@1) were characterized by UV-vis and fluorescence spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). TEM and XRD studies revealed the presence of ca. 5-6 nm diameter Ag NPs, and XPS also confirmed the successful anchorage of 1 at their periphery. The nanoassemblies Ag@1 were successfully used as macroinitiator for radical polymerization of acrylate monomers, triggered photochemically, to obtain Ag(0)-polyacrylate nanocomposite materials. The nanocomposite materials synthesized with the use of Ag@1 exhibit attractive possibilities for patterning the surface of thin films.


Subject(s)
Metal Nanoparticles/chemistry , Photochemical Processes , Polymerization , Silver/chemistry , Xanthones/chemistry , Acrylic Resins/chemistry , Free Radicals/chemistry , Optical Phenomena , Thioxanthenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...