Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Environ Health Sci Eng ; 21(1): 239-254, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37159740

ABSTRACT

A series of polypyrrole doped TiO2-SiO2 nanohybrids (Ppy/TS NHs) were synthesized thru in-situ oxidation polymerization by varying weight ratio of pyrrole. The structural analysis of NHs were characterized by X-ray Diffraction (XRD) spectra, UV-visible (UV-Vis) spectra and X-ray Photoelectron spectra (XPS) confirmed synthesis of nanomaterials. Surface and morphological study done by adopting, Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), Transmittance Electron Microscopy (TEM) and Brunauer-Emmett-Teller (BET) analysis confirmed the homogenous distribution, nano range size formation and mesoporous nature of nanohybrids. Further, electrochemical behavior of synthesized NHs investigated by adopting Electrochemical Impedance Spectroscopy (EIS) showed good kinetic behaviour and electron transport tendency. The nanohybrids and precursors were examined for photocatalytic degradation of methylene blue (MB) dye and revealed enhanced degradation tendency for the NHs series photocatalysts. It was found that variation of pyrrole (0.1 to 0.3 g) to TS nanocomposites (TS Nc) increased the photocatalytic potential of TS Nc. The maximum photodegradation efficacy was found to be 90.48% in 120 min for Ppy/TS0.2 NHs under direct solar light. Additionally, Ppy/TS0.2 NHs performed appreciably towards antibacterial studies against some Gram-positive and Gram-negative deleterious bacteria, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Shigella flexneri microbes.

2.
Environ Sci Pollut Res Int ; 30(44): 98773-98786, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36702986

ABSTRACT

A basic calcination process in one step was employed to create g-C3N4 photocatalytic composites modified by Gd2O3 nanoparticles. SEM (scanning electron microscopy), FTIR (Fourier-transform infrared spectroscopy), XRD (X-ray diffraction), EIS (electrochemical impedance spectroscopy), PL (photoluminescence studies) as well as TEM (transmission electron microscopy), XPS (X-ray photoelectron spectroscopy), and CV (cyclic voltammetry) were employed to explain the structural traits, optical properties, and morphological features of the processed photocatalyst. The findings show that Gd2O3 (Gd) does not affect the sample's crystalline structure but rather increases g-C3N4 surface area by spreading it superficially. Furthermore, Gd can redshift the light absorption peak, reduce the energy gap, and improve the efficiency with which photogenerated holes and electrons are removed in g-C3N4. The surface morphology of g-C3N4, in particular, could be significantly enhanced. We similarly employed three distinct photocatalytic complexes of Gd2O3 and g-C3N4 in 1:1, 2:1, and 3:1 proportions to degrade methylene blue (MB). After 100 min in visible light (400-800 nm), the photodegradation rate of composites is 58.8% for 1:1 (GG1), 94.5% for 2:1 (GG2), and 92% for 3:1 (GG3). In addition to the MB dye, the photocatalytic activity of synthesized materials was also studied for methyl orange. The result shows phenomenal degradation values, i.e.; for GG1 86%, GG2 96%, and for GG3 84.6%. The narrow band gap that separates the photogenerated electron and hole enhances g-C3N4 ability to degrade photo-catalytically. From the result, we concluded that the photocurrent and cyclic photocatalytic degradation of methylene blue shows that a composition of 2:1 Gd2O3/g-C3N4 has high photocatalytic stability.


Subject(s)
Methylene Blue , Nanocomposites , Methylene Blue/chemistry , Catalysis , Microscopy, Electron, Transmission , Light , Nanocomposites/chemistry
3.
Environ Sci Pollut Res Int ; 30(44): 98589-98600, 2023 Sep.
Article in English | MEDLINE | ID: mdl-35788487

ABSTRACT

Graphitic carbon nitride (g-C3N4) and polypyrrole (ppy) nanocomposites are synthesized and cast off as material for electrodes intended for energy storage, where the amount of pyrrole is being kept static after optimization by altering the amount of g-C3N4 to make a series of g-C3N4/ppy (pcn) nanocomposites. These nanocomposites are successfully synthesized by employing in-situ oxidation polymerization by oxidizing pyrrole. The nanocomposites are further characterized by Fourier transform infrared spectroscopy (FT-IR) for structural investigation, thermal gravimetric analysis (TGA) for thermal stability analysis, and field emission scanning electron microscopy (FESEM) and transmission electron microscopy (HR-TEM) for surface morphological scrutiny. The electrochemical measurements of the series are inspected with the help of galvanostatic charge-discharge (GCD), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV) measurements. It is detected that 0.4 pcn has the highest specific capacitance value of 555 F g-1 at 10 mV s-1 scan rate through CV and 475 F g-1 at a current density of 0.5 A g-1 through GCD in 1 M H2SO4 in contrast with neat g-C3N4 as well as ppy where both the precursors have this value below 100 F g-1. This composite exhibited good cyclic stability with high retention. The high energy density of 0.4 pcn composite is analyzed at 86 Wh/kg at a power density of 300 W/kg. Due to facile synthesis, significant specific capacitance, and excellent energy density, pcn is a promising candidate for its application in energy storage purposes.


Subject(s)
Nanocomposites , Polymers , Pyrroles , Spectroscopy, Fourier Transform Infrared , Electrodes
4.
Environ Sci Pollut Res Int ; 30(44): 98540-98547, 2023 Sep.
Article in English | MEDLINE | ID: mdl-35666418

ABSTRACT

In this study, a highly visible light responding 2D photocatalytic material has been prepared and analysed for its potential for photodegradation of organic pollutants. The pristine GCN has been co-doped with Mg/Li using the facile synthesis route. The prepared photocatalytic materials were then analysed using characterisation techniques like X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, diffuse reflectance spectra (DRS) and photoluminescence spectroscopy (PL) analysis. The prepared samples were analysed for photocatalytic degradation analysis towards methylene blue dye. The apparent rate constant value increased up to 5.4 times in the case of the GCNML (0.5,2) sample in comparison to GCNP. In addition, the GCNML (0.5,2) sample was also analysed for degradation of crystal violet (CV) (97% in 80 min), rose bengal (RB) (84% in 120 min) and methyl orange (MO) (45% in 120 min) dyes. The result obtained from the study confirmed that GCNML (0.5,2) can act as a potential photocatalyst for wastewater remediation application.


Subject(s)
Light , Wastewater , X-Ray Diffraction , Catalysis
5.
Sci Rep ; 12(1): 17366, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36253389

ABSTRACT

The present article intended to study the influence of post-synthetic modification with ethylenediamine (en, diamine) and diethylenetriamine (deta, triamine) within the coordinatively unsaturated sites (CUSs) of HKUST-1 on carbon dioxide and hydrogen storage. The as-sythesized adsorbent was solvent-exchanged and subsequently post-synthetically modified with di-/triamines as sources of amine-based sorption sites due to the increased CO2 storage capacity. It is known that carbon dioxide molecules have a high affinity for amine groups, and moreover, the volume of amine molecules itself reduces the free pore volume in HKUST-1, which is the driving force for increasing the hydrogen storage capacity. Different concentrations of amines were used for modification of HKUST-1, through which materials with different molar ratios of HKUST-1 to amine: 1:0.05; 1:0.1; 1:0.25; 1:0.5; 1:0.75; 1:1; 1:1.5 were synthesized. Adsorption measurements of carbon dioxide at 0 °C up to 1 bar have shown that the compounds can adsorb large amounts of carbon dioxide. In general, deta-modified samples showed higher adsorbed amounts of CO2 compared to en-modified materials, which can be explained by the higher number of amine groups within the deta molecule. With an increasing molar ratio of amines, there was a decrease in wt.% CO2. The maximum storage capacity of CO2 was 22.3 wt.% for HKUST-1: en/1:0.1 and 33.1 wt.% for HKUST-1: deta/1:0.05 at 0 °C and 1 bar. Hydrogen adsorption measurements showed the same trend as carbon dioxide, with the maximum H2 adsorbed amounts being 1.82 wt.% for HKUST-1: en/1:0.1 and 2.28 wt.% for HKUST-1: deta/1:0.05 at - 196 °C and 1 bar.

6.
Dalton Trans ; 50(24): 8392-8403, 2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34037026

ABSTRACT

A 3-dimensional ordered cubic mesoporous Ag-V2O5 loaded graphitic carbon nitride (mpg-CN) hybrid was fabricated via a facile nanocasting technique using mesoporous silica as the hard template and its sensing response towards xylene gas was investigated in detail. The physicochemical properties of the as prepared nanocomposite were estimated by transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM), elemental dispersive X-ray spectroscopy (EDX) and BET surface area analysis. The hybridized Ag-V2O5/mpg-CN nanocomposite prepared by template inversion of KIT-6 silica showed temperature reliant response towards the detection of common VOCs (xylene, formaldehyde, 2-propanol and benzene) usually found in our indoor environment. Sensing response values of 4.9 for 50 ppm and 12.7 for 500 ppm were reported for xylene gas at an operating temperature of 40 °C. Besides, average response/recovery times of 6.1/4.1 s (xylene), 7.7/5.1 s (formaldehyde), 8.7/6.6 s (2-propanol) and 9.5/8.4 s (benzene) were recorded for Ag-V2O5/mpg-CN, which demonstrated the potential of utilizing the as-prepared sensor in commercial real-time sensing applications.

7.
Environ Sci Pollut Res Int ; 28(4): 3972-3982, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33398749

ABSTRACT

The present study focuses on extract-mediated Ag nanoparticles (NPs), AgCl-NPs, and Ag/AgCl nanocomposites (NCs) as photocatalysts along with its antimicrobial and dye degradation activities. The synthesis of these NPs and NCs was performed by using Azadirachta indica plant fruit extract and analyzed using UV-Vis spectroscopy to confirm the synthesis and band gap of these NPs and NCs, X-ray diffraction (XRD) to determine its size and crystalline nature. Fourier transform infrared spectroscopy (FTIR) to discern phytochemicals, responsible for the reduction and capping of the synthesized NCs. Scanning electron microscopy analysis (SEM), transmission electron microscopy analysis (TEM), and energy dispersive X-ray (EDX) spectroscopy analysis were performed to validate the morphology and presence of silver and chloride percentage in the composites. Later, these NPs and NCs were used for their potential role in photocatalytic degradation of methylene blue dye and antibacterial activity against Escherichia coli and Staphylococcus aureus of human pathogen. The prepared Ag/AgCl-NCs exhibited an enhanced photocatalytic and antibacterial activities in comparison with pure Ag and AgCl nanomaterials. However, green-synthesized NPs and NCs played dual roles as a photocatalyst and antibacterial agent in various biomedical and industrial sectors. Moreover, we found that it might be a hot research in many other environmental applications in upcoming days.


Subject(s)
Metal Nanoparticles , Nanocomposites , Anti-Bacterial Agents/pharmacology , Green Chemistry Technology , Humans , Plant Extracts , Silver , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus , X-Ray Diffraction
8.
Environ Sci Pollut Res Int ; 28(4): 3888-3896, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32519096

ABSTRACT

Recently, graphitic carbon nitride (GCN) has been found to be of great interest in various sustainable applications. In this study, a simple preparation method using urea was utilized to synthesize GCN. In order to understand various morphological, structural, and optical aspects of the as-prepared sample, GCN was characterized using X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, Brunauere-Emmette-Teller (BET), scanning electron microscopy (SEM), and diffused reflectance spectra (DRS) analysis. The visible-light-driven photocatalytic activity of prepared GCN was analyzed for various cationic dyes (Crystal violet, rose bengal, rhodamine B, auramine O, methylene blue) and anionic dyes (phenol red, xylenol orange, cresol red, methyl orange). The calculated efficiencies of degradation and values of apparent rate constant for all dye samples suggested that cationic dyes are more actively degraded using GCN than anionic dyes. In addition, GCN was further analyzed for its splendid antibacterial activity against pathogenic bacteria (Klebsiella pneumonia and Escherichia coli). The synthesized photocatalyst holds a bright scope for the efficient remediation of organic pollutants and bacterial disinfection in wastewater. Graphical abstract.


Subject(s)
Environmental Pollutants , Graphite , Anti-Bacterial Agents/pharmacology , Catalysis , Nitrogen Compounds
9.
Environ Sci Pollut Res Int ; 28(6): 7116-7122, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33025444

ABSTRACT

Wastewater from textile industries is a potential source of organic dyes in natural water bodies. Environmental concerns of chemical methods for removal of dyes from wastewater are no more a viable solution, and there is growing concern to develop alternative approaches such as green chemistry and phytoremediation. This study reports the removal of organic dyes from wastewater using Eichhornia crassipes (Mart.) Solms (water hyacinth), as an easily available and fast-growing plant species. Growth of water hyacinth among individual cationic (rose bengal (RB), methylene blue (MB), crystal violet (CV), auramine O (AO), rhodamine B (RhB) and anionic (xylenol orange (XO), phenol red (PR), cresol red (CR), methyl orange (MO)) dye solutions and degradation of dyes were monitored. Results indicated that water hyacinth has good absorption and degradation potential for both types of dyes (cationic or anionic) and effectively removes dyes from solution. Water hyacinth can be used as a suitable and effective phytoremediate for removal of organic dyes from the wastewater.Graphical abstract.


Subject(s)
Eichhornia , Water Pollutants, Chemical , Biodegradation, Environmental , Coloring Agents , Wastewater
10.
ACS Omega ; 5(8): 3828-3838, 2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32149209

ABSTRACT

Solar energy-driven practices using semiconducting materials is an ideal approach toward wastewater remediation. In order to attain a superior photocatalyst, a composite of g-C3N4 and ZnO (GCN-ZnO) has been prepared by one-step thermal polymerization of urea and zinc carbonate basic dihydrate [ZnNO3]2·[Zn(OH)2]3. The GCN-ZnO0.4 sample showed an evolved morphology, increased surface area (116 m2 g-1), better visible light absorption ability, and reduced band gap in comparison to GCN-pure. The GCN-ZnO0.4 sample also showed enhanced adsorption and photocatalytic activity performance, resulting in an increased reaction rate value up to 3 times that of GCN-pure, which was attributed to the phenomenon of better separation of photogenerated charge carriers resulting because of heterojunction development among interfaces of GCN-pure and ZnO. In addition, the GCN-ZnO0.4 sample showed a decent stability for four cyclic runs and established its potential use for abatement of organic wastewater pollutants in comparison to GCN-pure.

SELECTION OF CITATIONS
SEARCH DETAIL
...