Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39026868

ABSTRACT

Neurodegenerative diseases are often characterized by mitochondrial dysfunction. In Alzheimer's disease, abnormal tau phosphorylation disrupts mitophagy, a quality control process through which damaged organelles are selectively removed from the mitochondrial network. The precise mechanism through which this occurs remains unclear. Previously, we showed that tau which has been mutated at Thr-231 to glutamic acid to mimic an Alzheimer's-relevant phospho-epitope expressed early in disease selectively inhibits oxidative stress-induced mitophagy in C. elegans . Here, we use immortalized mouse hippocampal neuronal cell lines to extend that result into mammalian cells. Specifically, we show that phosphomimetic tau at Ser-396/404 (EC) or Thr-231/Ser-235 (EM) partly inhibits mitophagy induction by paraquat, a potent inducer of mitochondrial oxidative stress. Moreover, a combination of immunologic and biochemical approaches demonstrates that the levels of the mitophagy receptor FKBP8, significantly decrease in response to paraquat in cells expressing EC or EM tau mutants, but not in cells expressing wildtype tau. In contrast, paraquat treatment results in a decrease in the levels of the mitophagy receptors FUNDC1 and BNIP3 in the presence of both wildtype tau and the tau mutants. Interestingly, FKBP8 is normally trafficked to the endoplasmic reticulum during oxidative stress induced mitophagy, and our results support a model where this trafficking is impacted by disease-relevant tau, perhaps through a direct interaction. We provide new insights into the molecular mechanisms underlying tau pathology in Alzheimer's disease and highlight FKBP8 receptor as a potential target for mitigating mitochondrial dysfunction in neurodegenerative diseases.

2.
Redox Biol ; 75: 103235, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38889622

ABSTRACT

Myofibroblasts are key cellular effectors of corneal wound healing from trauma, surgery, or infection. However, their persistent deposition of disorganized extracellular matrix can also cause corneal fibrosis and visual impairment. Recent work showed that the PPARγ agonist Troglitazone can mitigate established corneal fibrosis, and parallel in vitro data suggested this occurred through inhibition of the mitochondrial pyruvate carrier (MPC) rather than PPARγ. In addition to oxidative phosphorylation (Ox-Phos), pyruvate and other mitochondrial metabolites provide carbon for the synthesis of biological macromolecules. However, it is currently unclear how these roles selectively impact fibrosis. Here, we performed bioenergetic, metabolomic, and epigenetic analyses of corneal fibroblasts treated with TGF-ß1 to stimulate myofibroblast trans-differentiation, with further addition of Troglitazone or the MPC inhibitor UK5099, to identify MPC-dependencies that may facilitate remodeling and loss of the myofibroblast phenotype. Our results show that a shift in energy metabolism is associated with, but not sufficient to drive cellular remodeling. Metabolites whose abundances were sensitive to MPC inhibition suggest that sustained carbon influx into the Krebs' cycle is prioritized over proline synthesis to fuel collagen deposition. Furthermore, increased abundance of acetyl-CoA and increased histone H3 acetylation suggest that epigenetic mechanisms downstream of metabolic remodeling may reinforce cellular phenotypes. Overall, our results highlight a novel molecular target and metabolic vulnerability that affects myofibroblast persistence in the context of corneal wounding.

3.
Invest Ophthalmol Vis Sci ; 64(13): 36, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37870848

ABSTRACT

Purpose: The purpose of this study was to critically test the hypothesis that mitochondrial pyruvate carrier (MPC) function is essential for maintenance of the corneal myofibroblast phenotype in vitro and in vivo. Methods: Protein and mRNA for canonical profibrotic markers were assessed in cultured cat corneal myofibroblasts generated via transforming growth factor (TGF)-ß1 stimulation and treated with either the thiazolidinedione (TZD) troglitazone or the MPC inhibitor alpha-cyano-beta-(1-phenylindol-3-yl) acrylate (UK-5099). RNA sequencing was used to gain insight into signaling modules related to instructive, permissive, or corollary changes in gene expression following treatment. A feline photorefractive keratectomy (PRK) model of corneal wounding was used to test the efficacy of topical troglitazone at reducing α-smooth muscle actin (SMA)-positive staining when applied 2 to 4 weeks postoperatively, during peak fibrosis. Results: Troglitazone caused cultured myofibroblasts to adopt a fibroblast-like phenotype through a noncanonical, peroxisome proliferator-activated receptor (PPAR)-γ-independent mechanism. Direct MPC inhibition using UK-5099 recapitulated this effect, but classic inhibitors of oxidative phosphorylation (OXPHOS) did not. Gene Set Enrichment Analysis (GSEA) of RNA sequencing data converged on energy substrate utilization and the Mitochondrial Permeability Transition pore as key players in myofibroblast maintenance. Finally, troglitazone applied onto an established zone of active fibrosis post-PRK significantly reduced stromal α-SMA expression. Conclusions: Our results provide empirical evidence that metabolic remodeling in myofibroblasts creates selective vulnerabilities beyond simply mitochondrial energy production, and that these are critical for maintenance of the myofibroblast phenotype. For the first time, we provide proof-of-concept data showing that this remodeling can be exploited to treat existing corneal fibrosis via inhibition of the MPC.


Subject(s)
Fibroblasts , Myofibroblasts , Animals , Cats , Myofibroblasts/pathology , Troglitazone/pharmacology , Fibroblasts/metabolism , Transforming Growth Factor beta1/metabolism , Fibrosis , PPAR gamma/genetics , PPAR gamma/metabolism , Phenotype , Pyruvates/metabolism , Actins/metabolism , Cells, Cultured
4.
J Neurochem ; 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37787052

ABSTRACT

Phosphorylation of tau at sites associated with Alzheimer's disease (AD) likely plays a role in the disease progression. Mitochondrial impairment, correlating with increased presence of phosphorylated tau, has been identified as a contributing factor to neurodegenerative processes in AD. However, how tau phosphorylated at specific sites impacts mitochondrial function has not been fully defined. We examined how AD-relevant phosphomimetics of tau impact selected aspects of mitochondrial biology. To mimic phosphorylation at AD-associated sites, the serine/threonine (Ser/Thr) sites in wild-type green fluorescent protein (GFP)-tagged tau (T4) were converted to glutamic acid (E) to make pseudo-phosphorylated GFP-tagged Ser-396/404 (2EC) and GFP-tagged Thr-231/Ser-235 (2EM) constructs. These constructs were expressed in immortalized mouse hippocampal neuronal cell lines, and their impact on specific mitochondrial functions and responses to stressors were measured. Phosphomimetic tau altered mitochondrial distribution. Specifically, mitochondria accumulated in the soma of cells expressing either 2EC or 2EM and neurite-like extensions in 2EC cells were shorter. Additionally, adenosine triphosphate levels were reduced in both 2EC- and 2EM-expressing cells, and reactive oxygen species (ROS) production increased in 2EC cells during oxidation of succinate when compared to T4-expressing cells. Thapsigargin reduced mitochondrial membrane potential and increased ROS production in both 2EC and 2EM cells relative to T4 cells, with no significant difference in the effects of rotenone. These results show that tau phosphorylation at specific AD-relevant epitopes negatively affects mitochondria, with the extent of dysfunction and stress response varying according to the sites of phosphorylation. Altogether, these findings show that phosphorylated tau increases mitochondrial susceptibility to stressors and extend our understanding of potential mechanisms whereby phosphorylated tau promotes mitochondria dysfunction in tauopathies, including AD.

5.
bioRxiv ; 2023 Feb 19.
Article in English | MEDLINE | ID: mdl-36824940

ABSTRACT

Phosphorylation of tau at sites associated with Alzheimer's disease (AD) likely plays a role in the disease progression. Mitochondrial impairment, correlating with increased presence of phosphorylated tau, has been identified as a contributing factor to neurodegenerative processes in AD. However, how tau phosphorylated at specific sites impacts mitochondrial function has not been fully defined. We examined how AD-relevant phosphomimetics of tau impact selected aspects of mitochondrial biology. To mimic phosphorylation at AD-associated sites, the Ser/Thr sites in wild-type GFP tagged-tau (T4) were converted to glutamic acid (E) to make pseudophosphorylated GFP tagged-Ser-396/404 (2EC) and GFP tagged-Thr-231/Ser-235 (2EM) constructs. These constructs were expressed in neuronal HT22 cells and their impact on specific mitochondrial functions and responses to stressors were measured. Phosphomimetic tau altered mitochondrial distribution. Specifically, mitochondria accumulated in the soma of cells expressing either 2EC or 2EM, and neurite-like extensions in 2EC cells were shorter. Additionally, ATP levels were reduced in both 2EC and 2EM expressing cells, and ROS production increased in 2EC cells during oxidation of succinate when compared to T4 expressing cells. Thapsigargin reduced mitochondrial membrane potential (Ψ m ) and increased ROS production in both 2EC and 2EM cells relative to T4 cells, with no significant difference in the effects of rotenone. These results show that tau phosphorylation at specific AD-relevant epitopes negatively affects mitochondria, with the extent of dysfunction and stress response varying according to the sites of phosphorylation. Altogether, these findings extend our understanding of potential mechanisms whereby phosphorylated tau promotes mitochondria dysfunction in tauopathies, including AD. Funding information: R01 AG067617.

6.
Genetics ; 222(1)2022 08 30.
Article in English | MEDLINE | ID: mdl-35916724

ABSTRACT

Accumulation of inappropriately phosphorylated tau into neurofibrillary tangles is a defining feature of Alzheimer's disease, with Tau pT231 being an early harbinger of tau pathology. Previously, we demonstrated that expressing a single genomic copy of human phosphomimetic mutant tau (T231E) in Caenorhabditis elegans drove age-dependent neurodegeneration. A critical finding was that T231E, unlike wild-type tau, completely and selectively suppressed oxidative stress-induced mitophagy. Here, we used dynamic imaging approaches to analyze T231E-associated changes in mitochondria and mitolysosome morphology, abundance, trafficking, and stress-induced mitophagy as a function of mitochondrial fission mediator dynamin-related protein 1, which has been demonstrated to interact with hyper phosphorylated tau and contribute to Alzheimer's disease pathogenesis, as well as Pink1, a well-recognized mediator of mitochondrial quality control that works together with Parkin to support stress-induced mitophagy. T231E impacted both mitophagy and mitolysosome neurite trafficking with exquisite selectivity, sparing macroautophagy as well as lysosome and autolysosome trafficking. Both oxidative-stress-induced mitophagy and the ability of T231E to suppress it were independent of drp-1, but at least partially dependent on pink-1. Organelle trafficking was more complicated, with drp-1 and pink-1 mutants exerting independent effects, but generally supported the idea that the mitophagy phenotype is of greater physiologic impact in T231E. Collectively, our results refine the mechanistic pathway through which T231E causes neurodegeneration, demonstrating pathologic selectivity for mutations that mimic tauopathy-associated post-translational modifications, physiologic selectivity for organelles that contain damaged mitochondria, and molecular selectivity for dynamin-related protein 1-independent, Pink1-dependent, perhaps adaptive, and mitophagy.


Subject(s)
Alzheimer Disease , Caenorhabditis elegans Proteins/metabolism , Dynamins/metabolism , Mitophagy , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Dynamins/genetics , Dynamins/pharmacology , Humans , Mitophagy/physiology , Protein Kinases/genetics , Ubiquitin-Protein Ligases/genetics
7.
Elife ; 112022 06 06.
Article in English | MEDLINE | ID: mdl-35666106

ABSTRACT

Biological clocks are fundamental to an organism's health, controlling periodicity of behaviour and metabolism. Here, we identify two acid-sensing ion channels, with very different proton sensing properties, and describe their role in an ultradian clock, the defecation motor program (DMP) of the nematode Caenorhabditis elegans. An ACD-5-containing channel, on the apical membrane of the intestinal epithelium, is essential for maintenance of luminal acidity, and thus the rhythmic oscillations in lumen pH. In contrast, the second channel, composed of FLR-1, ACD-3 and/or DEL-5, located on the basolateral membrane, controls the intracellular Ca2+ wave and forms a core component of the master oscillator that controls the timing and rhythmicity of the DMP. flr-1 and acd-3/del-5 mutants show severe developmental and metabolic defects. We thus directly link the proton-sensing properties of these channels to their physiological roles in pH regulation and Ca2+ signalling, the generation of an ultradian oscillator, and its metabolic consequences.


Biological clocks regulate a myriad of processes that occur periodically, from sleeping and waking to how cells use nutrients and energy. One such clock is the one that controls intestinal movements and defecation in the nematode worm Caenorhabditis elegans, which consists of three muscle contractions occurring every 50 seconds. This rhythm is controlled by calcium and proton signalling in the cells of the intestine. The cells of the nematode intestine form a tube, through which gut contents pass. The inside of the tube is acidic, but acidity also plays a role on the outer face of the intestinal tube. In this area, nutrients are distributed and signals are conveyed to other tissues, such as muscles. In fact, acid ­ in the form of protons ­ secreted from the intestinal cells stimulates the muscles that contract in the biological clock that controls the worms' defecation. However, it is poorly understood how the worms control the release of these protons. Kaulich et al. identified two ion channels on the membranes of intestinal cells that become inhibited when the levels of acid surrounding them are high. These channels play distinct roles in controlling the contractions that move the contents of the roundworms' intestines along. The first channel contains a protein called ACD-5, and it is in the membrane of the intestinal cells that faces the inside of the intestinal tube. The second channel is formed by three proteins: FLR-1, ACD-3 and DEL-5. This channel is found on the other side of the intestinal cells, the region where nutrients are distributed and signals are conveyed to the rest of the body. To determine the role of each channel, Kaulich et al. genetically engineered the worms so they would not make the proteins that make up the channels, and imaged the live nematodes to see the effects of removing each channel. The inside of the intestines of worms lacking the ACD-5 containing channel was less acidic than that of normal worms, and the timing of the contractions that control defecation was also slightly altered. Removing the second channel (the one formed by three different proteins), however, had more dramatic effects: the worms were thin, developed more slowly, had less fat tissue and defecated very irregularly. Kaulich et al. imaged live worms to show that the second channel plays a major role in regulating oscillations in acidity both inside and outside cells, as well as controlling calcium levels. This demonstrates that this channel is responsible for the rhythmicity in the contractions that control defecation in the nematodes. Their findings provide important insights towards better understanding proton signalling and the role of acid-sensing ion channels in cellular contexts and biological clocks.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Acid Sensing Ion Channels/metabolism , Animals , Caenorhabditis elegans/physiology , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Defecation/physiology , Protons
8.
Invest Ophthalmol Vis Sci ; 63(4): 2, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35377925

ABSTRACT

Purpose: Fibrosis caused by corneal wounding can lead to scar formation, impairing vision. Although preventing fibroblast-to-myofibroblast differentiation has therapeutic potential, effective mechanisms for doing so remain elusive. Recent work shows that mitochondria contribute to differentiation in several tissues. Here, we tested the hypothesis that mitochondrial dynamics, and specifically fission, are key for transforming growth factor (TGF)-ß1-induced corneal myofibroblast differentiation. Methods: Mitochondrial fission was inhibited pharmacologically in cultured primary cat corneal fibroblasts. We measured its impact on molecular markers of myofibroblast differentiation and assessed changes in mitochondrial morphology through fluorescence imaging. The phosphorylation status of established regulatory proteins, both of myofibroblast differentiation and mitochondrial fission, was assessed by Western analysis. Results: Pharmacological inhibition of mitochondrial fission suppressed TGF-ß1-induced increases in alpha-smooth muscle actin, collagen 1, and fibronectin expression, and prevented phosphorylation of c-Jun N-terminal kinase (JNK), but not small mothers against decapentaplegic 3, p38 mitogen-activated protein kinase (p38), extracellular signal-regulated kinase 1 (ERK1), or protein kinase B (AKT). TGF-ß1 increased phosphorylation of dynamin-related protein 1 (DRP1), a mitochondrial fission regulator, and caused fragmentation of the mitochondrial network. Although inhibition of JNK, ERK1, or AKT prevented phosphorylation of DRP1, none sufficed to independently suppress TGF-ß1-induced fragmentation. Conclusions: Mitochondrial dynamics play a key role in early corneal fibrogenesis, acting together with profibrotic signaling. This is consistent with mitochondria's role as signaling hubs that coordinate metabolic decision-making. This suggests a feed-forward cascade through which mitochondria, at least in part through fission, reinforce noncanonical TGF-ß1 signaling to attain corneal myofibroblast differentiation.


Subject(s)
Mitochondrial Dynamics , Myofibroblasts , Cells, Cultured , Fibroblasts/metabolism , Phosphorylation
9.
Biology (Basel) ; 10(10)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34681146

ABSTRACT

Sporadic Alzheimer's Disease (AD) is the most common form of dementia, and its severity is characterized by the progressive formation of tau neurofibrillary tangles along a well-described path through the brain. This spatial progression provides the basis for Braak staging of the pathological progression for AD. Tau protein is a necessary component of AD pathology, and recent studies have found that soluble tau species with selectively, but not extensively, modified epitopes accumulate along the path of disease progression before AD-associated insoluble aggregates form. As such, modified tau may represent a key cellular stressing agent that potentiates selective vulnerability in susceptible neurons during AD progression. Specifically, studies have found that tau phosphorylated at sites such as T181, T231, and S396 may initiate early pathological changes in tau by disrupting proper tau localization, initiating tau oligomerization, and facilitating tau accumulation and extracellular export. Thus, this review elucidates potential mechanisms through which tau post-translational modifications (PTMs) may simultaneously serve as key modulators of the spatial progression observed in AD development and as key instigators of early pathology related to neurodegeneration-relevant cellular dysfunctions.

10.
Autophagy ; 17(11): 3389-3401, 2021 11.
Article in English | MEDLINE | ID: mdl-33416042

ABSTRACT

Mitochondrial quality control (MQC) balances organelle adaptation and elimination, and mechanistic crosstalk between the underlying molecular processes affects subsequent stress outcomes. FUNDC1 (FUN14 domain containing 1) is a mammalian mitophagy receptor that responds to hypoxia-reoxygenation (HR) stress. Here, we provide evidence that FNDC-1 is the C. elegans ortholog of FUNDC1, and that its loss protects against injury in a worm model of HR. This protection depends upon ATFS-1, a transcription factor that is central to the mitochondrial unfolded protein response (UPRmt). Global mRNA and metabolite profiling suggest that atfs-1-dependent stress responses and metabolic remodeling occur in response to the loss of fndc-1. These data support a role for FNDC-1 in non-hypoxic MQC, and further suggest that these changes are prophylactic in relation to subsequent HR. Our results highlight functional coordination between mitochondrial adaptation and elimination that organizes stress responses and metabolic rewiring to protect against HR injury.Abbreviations: AL: autolysosome; AP: autophagosome; FUNDC1: FUN14 domain containing 1; HR: hypoxia-reperfusion; IR: ischemia-reperfusion; lof: loss of function; MQC: mitochondrial quality control; PCA: principle component analysis; PPP: pentonse phosphate pathway; proK (proteinase K);UPRmt: mitochondrial unfolded protein response; RNAi: RNA interference.


Subject(s)
Caenorhabditis elegans Proteins/physiology , Caenorhabditis elegans/physiology , Mitochondrial Proteins/physiology , Mitophagy/physiology , Transcription Factors/physiology , Animals , Animals, Genetically Modified , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Genes, Helminth , Hypoxia/genetics , Hypoxia/physiopathology , Loss of Function Mutation , Membrane Proteins/genetics , Membrane Proteins/physiology , Mitochondrial Proteins/genetics , Mitophagy/genetics , Reperfusion Injury/genetics , Reperfusion Injury/physiopathology , Transcription Factors/genetics
11.
Mol Neurodegener ; 15(1): 65, 2020 11 09.
Article in English | MEDLINE | ID: mdl-33168053

ABSTRACT

BACKGROUND: A defining pathological hallmark of the progressive neurodegenerative disorder Alzheimer's disease (AD) is the accumulation of misfolded tau with abnormal post-translational modifications (PTMs). These include phosphorylation at Threonine 231 (T231) and acetylation at Lysine 274 (K274) and at Lysine 281 (K281). Although tau is recognized to play a central role in pathogenesis of AD, the precise mechanisms by which these abnormal PTMs contribute to the neural toxicity of tau is unclear. METHODS: Human 0N4R tau (wild type) was expressed in touch receptor neurons of the genetic model organism C. elegans through single-copy gene insertion. Defined mutations were then introduced into the single-copy tau transgene through CRISPR-Cas9 genome editing. These mutations included T231E, to mimic phosphorylation of a commonly observed pathological epitope, and K274/281Q, to mimic disease-associated lysine acetylation - collectively referred as "PTM-mimetics" - as well as a T231A phosphoablation mutant. Stereotypical touch response assays were used to assess behavioral defects in the transgenic strains as a function of age. Genetically-encoded fluorescent biosensors were expressed in touch neurons and used to measure neuronal morphology, mitochondrial morphology, mitophagy, and macro autophagy. RESULTS: Unlike existing tau overexpression models, C. elegans single-copy expression of tau did not elicit overt pathological phenotypes at baseline. However, strains expressing disease associated PTM-mimetics (T231E and K274/281Q) exhibited reduced touch sensation and neuronal morphological abnormalities that increased with age. In addition, the PTM-mimetic mutants lacked the ability to engage neuronal mitophagy in response to mitochondrial stress. CONCLUSIONS: Limiting the expression of tau results in a genetic model where modifications that mimic pathologic tauopathy-associated PTMs contribute to cryptic, stress-inducible phenotypes that evolve with age. These findings and their relationship to mitochondrial stress provides a new perspective into the pathogenic mechanisms underlying AD.


Subject(s)
Mitophagy/physiology , Nerve Degeneration/pathology , Tauopathies/pathology , tau Proteins/genetics , Animals , Animals, Genetically Modified , Caenorhabditis elegans , Disease Models, Animal , Humans , Mutation
13.
Mol Neurobiol ; 57(12): 5103-5120, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32851560

ABSTRACT

Alzheimer's disease (AD) is the most common progressive neurodegenerative disorder. A defining hallmark of the AD brain is the presence of intraneuronal neurofibrillary tangles (NFTs) which are made up of abnormally modified tau, with aberrant phosphorylation being the most studied posttranslational modification (PTM). Although the accumulation of tau as NFTs is an invariant feature of the AD brain, it has become evident that these insoluble aggregates are likely not the primary pathogenic form of tau, rather soluble forms of tau with abnormal PTMs are the mediators of toxicity. The most prevalent PTM on tau is phosphorylation, with the abnormal modification of specific residues on tau playing a key role in its toxicity. Even though it is widely accepted that tau with aberrant PTMs facilitates neurodegeneration, the precise cellular mechanisms remain unknown. Nonetheless, there is an evolving conceptual framework that an important contributing factor may be selective pathological tau species compromising mitochondrial biology. Understanding the mechanisms by which tau with site-specific PTM impacts mitochondria is crucial for understanding the role tau plays in AD. Here, we provide a brief introduction to tau and its phosphorylation and function in a physiological context, followed by a discussion of the impact of soluble phosphorylated tau species on neuronal processes in general and mitochondria more specifically. We also discuss how therapeutic strategies that attenuate pathological tau species in combination with treatments that improve mitochondrial biology could be a potential therapeutic avenue to mitigate disease progression in AD and other tauopathies.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Mitochondria/metabolism , tau Proteins/metabolism , Animals , Axonal Transport , Humans , Mitochondrial Dynamics , Phosphorylation , tau Proteins/chemistry
14.
Biochem Biophys Res Commun ; 521(2): 333-339, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31668808

ABSTRACT

Corneal scarring is a major cause of blindness worldwide with few effective therapeutic options. Finding a treatment would be of tremendous public health benefit, but requires a thorough understanding of the complex interactions that underlie this phenomenon. Here, we tested the hypothesis that the large increase in expression of Semaphorin 3A (SEMA3A) in corneal wounds contributes to the development of stromal fibrosis. We first verified this increased expression in vivo, in a cat model of photorefractive keratectomy-induced corneal wounding. We then examined the impact of adding exogenous SEMA3A to cultured corneal fibroblasts, and assessed how this affected the ability of transforming growth factor-beta1 (TGF-ß1) to induce their differentiation into myofibroblasts. Finally, we examined how siRNA knockdown of endogenous SEMA3A affected these same phenomena. We found exogenous SEMA3A to significantly potentiate TGF-ß1's profibrotic effects, with only a minimal contribution from cell-intrinsic SEMA3A. Our results suggest a previously unrecognized interaction between SEMA3A and TGF-ß1 in the wounded cornea, and a possible contribution of SEMA3A to the regulation of tissue fibrosis and remodeling in this transparent organ.


Subject(s)
Fibrosis/chemically induced , Semaphorin-3A/pharmacology , Transforming Growth Factor beta1/pharmacology , Animals , Cats , Cell Differentiation/drug effects , Cells, Cultured , Corneal Injuries/metabolism , Corneal Injuries/pathology , Drug Synergism , Fibroblasts/cytology , Myofibroblasts/cytology , Wound Healing/drug effects
15.
Am J Physiol Heart Circ Physiol ; 317(2): H472-H478, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31274354

ABSTRACT

The mitochondrial unfolded protein response (UPRmt) is a cytoprotective signaling pathway triggered by mitochondrial dysfunction. UPRmt activation upregulates chaperones, proteases, antioxidants, and glycolysis at the gene level to restore proteostasis and cell energetics. Activating transcription factor 5 (ATF5) is a proposed mediator of the mammalian UPRmt. Herein, we hypothesized pharmacological UPRmt activation may protect against cardiac ischemia-reperfusion (I/R) injury in an ATF5-dependent manner. Accordingly, in vivo administration of the UPRmt inducers oligomycin or doxycycline 6 h before ex vivo I/R injury (perfused heart) was cardioprotective in wild-type but not global Atf5-/- mice. Acute ex vivo UPRmt activation was not cardioprotective, and loss of ATF5 did not impact baseline I/R injury without UPRmt induction. In vivo UPRmt induction significantly upregulated many known UPRmt-linked genes (cardiac quantitative PCR and Western blot analysis), and RNA-Seq revealed an UPRmt-induced ATF5-dependent gene set, which may contribute to cardioprotection. This is the first in vivo proof of a role for ATF5 in the mammalian UPRmt and the first demonstration that UPRmt is a cardioprotective drug target.NEW & NOTEWORTHY Cardioprotection can be induced by drugs that activate the mitochondrial unfolded protein response (UPRmt). UPRmt protection is dependent on activating transcription factor 5 (ATF5). This is the first in vivo evidence for a role of ATF5 in the mammalian UPRmt.


Subject(s)
Activating Transcription Factors/metabolism , Doxycycline/pharmacology , Mitochondria, Heart/drug effects , Myocardial Reperfusion Injury/prevention & control , Myocytes, Cardiac/drug effects , Oligomycins/pharmacology , Unfolded Protein Response/drug effects , Activating Transcription Factors/deficiency , Activating Transcription Factors/genetics , Animals , Disease Models, Animal , Female , Gene Expression Regulation , Isolated Heart Preparation , Male , Mice, Inbred C57BL , Mice, Knockout , Mitochondria, Heart/genetics , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology
16.
Dev Biol ; 454(1): 15-20, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31233739

ABSTRACT

Paternal mitochondria are eliminated following fertilization by selective autophagy, but the mechanisms that restrict this process to sperm-derived organelles are not well understood. FUNDC1 (FUN14 domain containing 1) is a mammalian mitophagy receptor expressed on the mitochondrial outer membrane that contributes to mitochondrial quality control following hypoxic stress. Like FUNDC1, the C. elegans ortholog FNDC-1 is widely expressed in somatic tissues and mediates hypoxic mitophagy. Here, we report that FNDC-1 is strongly expressed in sperm but not oocytes and contributes to paternal mitochondria elimination. Paternal mitochondrial DNA is normally undetectable in wildtype larva, but can be detected in the cross-progeny of fndc-1 mutant males. Moreover, loss of fndc-1 retards the rate of paternal mitochondria degradation, but not that of membranous organelles, a nematode specific membrane compartment whose fusion is required for sperm motility. This is the first example of a ubiquitin-independent mitophagy receptor playing a role in the selective degradation of sperm mitochondria.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Animals , Autophagy/genetics , Caenorhabditis elegans/metabolism , DNA, Mitochondrial/genetics , Embryo, Nonmammalian/metabolism , Fertilization , Humans , Lysosomes/metabolism , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mitochondria/genetics , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/genetics , Mitophagy/physiology , Oocytes/metabolism , Organelles/metabolism , Sperm Motility , Spermatozoa/metabolism , Ubiquitin/metabolism
17.
J Mol Cell Cardiol ; 121: 155-162, 2018 08.
Article in English | MEDLINE | ID: mdl-29958828

ABSTRACT

Stimulation of the cytosolic NAD+ dependent deacetylase SIRT1 is cardioprotective against ischemia-reperfusion (IR) injury. NAD+ precursors including nicotinamide mononucleotide (NMN) are thought to induce cardioprotection via SIRT1. Herein, while NMN protected perfused hearts against IR (functional recovery: NMN 42 ±â€¯7% vs. vehicle 11 ±â€¯3%), this protection was insensitive to the SIRT1 inhibitor splitomicin (recovery 47 ±â€¯8%). Although NMN-induced cardioprotection was absent in Sirt3-/- hearts (recovery 9 ±â€¯5%), this was likely due to enhanced baseline injury in Sirt3-/- (recovery 6 ±â€¯2%), since similar injury levels in WT hearts also blunted the protective efficacy of NMN. Considering alternative cardiac effects of NMN, and the requirement of glycolysis for NAD+, we hypothesized NMN may confer protection in part via direct stimulation of cardiac glycolysis. In primary cardiomyocytes, NMN induced cytosolic and extracellular acidification and elevated lactate. In addition, [U-13C]glucose tracing in intact hearts revealed that NMN stimulated glycolytic flux. Consistent with a role for glycolysis in NMN-induced protection, hearts perfused without glucose (palmitate as fuel source), or hearts perfused with galactose (no ATP from glycolysis) exhibited no benefit from NMN (recovery 11 ±â€¯4% and 15 ±â€¯2% respectively). Acidosis during early reperfusion is known to be cardioprotective (i.e., acid post-conditioning), and we also found that NMN was cardioprotective when delivered acutely at reperfusion (recovery 39 ±â€¯8%). This effect of NMN was not additive with acidosis, suggesting overlapping mechanisms. We conclude that the acute cardioprotective benefits of NMN are mediated in part via glycolytic stimulation, with the downstream protective mechanism involving enhanced ATP synthesis during ischemia and/or enhanced acidosis during reperfusion.


Subject(s)
Myocardium/metabolism , Nicotinamide Mononucleotide/metabolism , Reperfusion Injury/drug therapy , Sirtuin 1/genetics , Sirtuin 3/genetics , Acidosis/genetics , Acidosis/metabolism , Acidosis/pathology , Acids/metabolism , Adenosine Triphosphate/metabolism , Animals , Cardiotonic Agents/pharmacology , Glucose/metabolism , Glycolysis/genetics , Humans , Hydrogen-Ion Concentration , Mice , Myocardium/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , NAD/metabolism , Naphthalenes/pharmacology , Nicotinamide Mononucleotide/pharmacology , Pyrones/pharmacology , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/pathology
18.
FASEB J ; : fj201800139R, 2018 Jun 04.
Article in English | MEDLINE | ID: mdl-29863912

ABSTRACT

Controversy surrounds the molecular identity of mitochondrial K+ channels that are important for protection against cardiac ischemia-reperfusion injury. Although KNa1.2 (sodium-activated potassium channel encoded by Kcn2) is necessary for cardioprotection by volatile anesthetics, electrophysiological evidence for a channel of this type in mitochondria is lacking. The endogenous physiological role of a potential mito-KNa1.2 channel is also unclear. In this study, single channel patch-clamp of 27 independent cardiac mitochondrial inner membrane (mitoplast) preparations from wild-type (WT) mice yielded 6 channels matching the known ion sensitivity, ion selectivity, pharmacology, and conductance properties of KNa1.2 (slope conductance, 138 ± 1 pS). However, similar experiments on 40 preparations from Kcnt2-/- mice yielded no such channels. The KNa opener bithionol uncoupled respiration in WT but not Kcnt2-/- cardiomyocytes. Furthermore, when oxidizing only fat as substrate, Kcnt2-/- cardiomyocytes and hearts were less responsive to increases in energetic demand. Kcnt2-/- mice also had elevated body fat, but no baseline differences in the cardiac metabolome. These data support the existence of a cardiac mitochondrial KNa1.2 channel, and a role for cardiac KNa1.2 in regulating metabolism under conditions of high energetic demand.-Smith, C. O., Wang, Y. T., Nadtochiy, S. M., Miller, J. H., Jonas, E. A., Dirksen, R. T., Nehrke, K., Brookes, P. S. Cardiac metabolic effects of KNa1.2 channel deletion and evidence for its mitochondrial localization.

19.
Biochem J ; 474(16): 2829-2839, 2017 08 10.
Article in English | MEDLINE | ID: mdl-28673962

ABSTRACT

2-Hydroxyglutarate (2-HG) is a hypoxic metabolite with potentially important epigenetic signaling roles. The mechanisms underlying 2-HG generation are poorly understood, but evidence suggests a potential regulatory role for the sirtuin family of lysine deacetylases. Thus, we hypothesized that the acetylation status of the major 2-HG-generating enzymes [lactate dehydrogenase (LDH), isocitrate dehydrogenase (IDH) and malate dehydrogenase (MDH)] may govern their 2-HG-generating activity. In vitro acetylation of these enzymes, with confirmation by western blotting, mass spectrometry, reversibility by recombinant sirtuins and an assay for global lysine occupancy, yielded no effect on 2-HG-generating activity. In addition, while elevated 2-HG in hypoxia is associated with the activation of lysine deacetylases, we found that mice lacking mitochondrial SIRT3 exhibited hyperacetylation and elevated 2-HG. These data suggest that there is no direct link between enzyme acetylation and 2-HG production. Furthermore, our observed effects of in vitro acetylation on the canonical activities of IDH, MDH and LDH appeared to contrast with previous findings wherein acetyl-mimetic lysine mutations resulted in the inhibition of these enzymes. Overall, these data suggest that a causal relationship should not be assumed between acetylation of metabolic enzymes and their activities, canonical or otherwise.


Subject(s)
Glutarates/metabolism , Lysine/metabolism , Mitochondria, Heart/enzymology , Mitochondrial Proteins/genetics , Protein Processing, Post-Translational , Sirtuin 3/genetics , Acetylation , Animals , Cell Hypoxia , Enzyme Assays , HEK293 Cells , Humans , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Kinetics , L-Lactate Dehydrogenase/genetics , L-Lactate Dehydrogenase/metabolism , Malate Dehydrogenase/genetics , Malate Dehydrogenase/metabolism , Male , Mice , Mice, Knockout , Mitochondrial Proteins/metabolism , Signal Transduction , Sirtuin 3/deficiency
20.
Biochem J ; 474(12): 2067-2094, 2017 06 09.
Article in English | MEDLINE | ID: mdl-28600454

ABSTRACT

Mitochondria play an important role in tissue ischemia and reperfusion (IR) injury, with energetic failure and the opening of the mitochondrial permeability transition pore being the major causes of IR-induced cell death. Thus, mitochondria are an appropriate focus for strategies to protect against IR injury. Two widely studied paradigms of IR protection, particularly in the field of cardiac IR, are ischemic preconditioning (IPC) and volatile anesthetic preconditioning (APC). While the molecular mechanisms recruited by these protective paradigms are not fully elucidated, a commonality is the involvement of mitochondrial K+ channel opening. In the case of IPC, research has focused on a mitochondrial ATP-sensitive K+ channel (mitoKATP), but, despite recent progress, the molecular identity of this channel remains a subject of contention. In the case of APC, early research suggested the existence of a mitochondrial large-conductance K+ (BK, big conductance of potassium) channel encoded by the Kcnma1 gene, although more recent work has shown that the channel that underlies APC is in fact encoded by Kcnt2 In this review, we discuss both the pharmacologic and genetic evidence for the existence and identity of mitochondrial K+ channels, and the role of these channels both in IR protection and in regulating normal mitochondrial function.


Subject(s)
Allostasis , Mitochondria, Heart/metabolism , Models, Biological , Myocardial Ischemia/metabolism , Myocardial Reperfusion Injury/metabolism , Potassium Channels/metabolism , Animals , Cardiotonic Agents/pharmacology , Humans , Ion Channel Gating/drug effects , Ischemic Preconditioning, Myocardial , KATP Channels/agonists , KATP Channels/antagonists & inhibitors , KATP Channels/genetics , KATP Channels/metabolism , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/agonists , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/antagonists & inhibitors , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/genetics , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism , Membrane Transport Modulators/pharmacology , Mitochondria, Heart/drug effects , Myocardial Ischemia/therapy , Myocardial Reperfusion Injury/prevention & control , Potassium Channel Blockers/pharmacology , Potassium Channels/agonists , Potassium Channels/chemistry , Potassium Channels/genetics , Potassium Channels, Sodium-Activated , Protein Isoforms/agonists , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/genetics , Protein Isoforms/metabolism , Terminology as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...