Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 265: 120395, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34536886

ABSTRACT

A feasibly constructed novel pyridine based receptor (S) has been reported for the selective detection of copper ion over other metal ions. The metal sensing ability of receptor with diverse metal ions were studied by colorimetry, absorption and emission spectroscopic systems in CH3CN/H2O (7:3, v/v). This receptor reveals a drastic color converts from vapid to yellow and cyan under normal light and UV light with copper ion. Further, S-Cu2+ complex exhibits new UV-Visible band at 419 nm and intense fluorescence band at 494 nm upon the excitation at 388 nm. The stoichiometric binding ratio of receptor with metal ion was confirmed with Job's method and ESI-Mass also further supported the complexation. Besides, limits of detection of Cu2+ were calculated to be 0.25 µM. The limiting capacity of receptor with Cu2+ ion was additionally explored by quantum chemical calculation. Moreover, this receptor was effectively utilized for the measurement of Cu2+ ion in various water tests.


Subject(s)
Copper , Fluorescent Dyes , Ions , Pyridines , Spectrometry, Fluorescence
2.
RSC Adv ; 10(61): 37409-37418, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-35521276

ABSTRACT

Trace determination of radioactive waste, especially Ce3+, by electrochemical methods has rarely been attempted. Ce3+ is (i) a fluorescence quencher, (ii) an antiferromagnet, and (iii) a superconductor, and it has been incorporated into fast scintillators, LED phosphors, and fluorescent lamps. Although Ce3+ has been utilized in many industries due to its specific properties, it causes severe health problems to human beings because of its toxicity. Nanomaterials with fascinating electrical properties can play a vital role in the fabrication of a sensor device to detect the analyte of interest. In the present study, surfactant-free 1,8-diaminonaphthalene (DAN)-functionalized graphene quantum dots (DAN-GQDs) with nanobud (NB) morphology were utilized for the determination of Ce3+ through electrochemical studies. The working electrode, graphene nanobud (GNB)-modified-carbon felt (CF), was developed by a simple drop-coating method for the sensitive detection of Ce3+ in acetate buffer solution (ABS, pH 4.0 ± 0.05) at a scan rate of 50 mV s-1 using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. CV and DPV studies validated the existence of distinctive peaks at approximately +0.20 and +0.93 V (vs. SCE), respectively, with a limit of detection of approximately 2.60 µM. Furthermore, electrochemical studies revealed that the GNB-modified-CF electrode was (i) stable even after fifteen cycles, (ii) reproducible, (iii) selective towards Ce3+, (iv) strongly pH-dependent, and (v) favored Ce3+ sensing only at pH 4.0 ± 0.05. Impedance spectroscopy results indicated that the GNB-modified-CF electrode was more conductive (1.38 × 10-4 S m-1) and exhibited more rapid electron transfer than bare CF, which agrees with the attained Randles equivalent circuit. Microscopy (AFM, FE-SEM, and HR-TEM), spectroscopy (XPS and Raman), XRD, and energy-dispersive X-ray (EDX) analyses of the GNB-modified-CF electrode confirmed the adsorption of Ce3+ onto the electrode surface and the size of the electrode material. Ce3+ nanobuds increased from 35-40 to 50-55 nm without changing their morphology. The obtained results provide an insight into the determination of Ce3+ to develop an electrochemical device with low sensitivity.

3.
Angew Chem Int Ed Engl ; 48(7): 1257-60, 2009.
Article in English | MEDLINE | ID: mdl-19137521

ABSTRACT

An advanced intermediate: A nonheme iron(IV) oxo complex [Fe(IV)(O)(bqen)(L)](n+) (bqen = N,N'-dimethyl-N,N'-bis(8-quinolyl)ethane-1,2-diamine, L = CH(3)CN or CF(3)SO(3)(-)) activates the C-H bonds of alkanes and alcohols by a hydrogen-atom abstraction mechanism. The catalytic oxidation of these species is proposed to occur through a nonheme iron(V) oxo species, with a high reactivity in oxidation reactions (see picture).


Subject(s)
Alcohols/chemistry , Alkanes/chemistry , Iron/chemistry , Catalysis , Kinetics , Ligands , Oxidation-Reduction , Spectrum Analysis , Temperature
4.
Chem Commun (Camb) ; (44): 4623-5, 2007 Nov 28.
Article in English | MEDLINE | ID: mdl-17989812

ABSTRACT

A non-heme manganese(II) complex shows a high catalytic activity in the epoxidation of olefins by iodosyl benzene and in the oxidation of olefins, alcohols and alkanes by peracetic acid; a mechanism involving metal-based oxidants is proposed for the oxidation reactions.


Subject(s)
Manganese/chemistry , Organometallic Compounds/chemistry , Oxygen/chemistry , Alcohols/chemistry , Alkanes/chemistry , Alkenes/chemistry , Catalysis , Iodobenzenes/chemistry , Ketones/chemical synthesis , Ketones/chemistry , Magnetic Resonance Spectroscopy/methods , Models, Molecular , Molecular Structure , Oxidation-Reduction , Peracetic Acid/chemistry
5.
Inorg Chem ; 46(1): 293-8, 2007 Jan 08.
Article in English | MEDLINE | ID: mdl-17198439

ABSTRACT

Nonheme and heme iron monooxygenases participate in oxidative N-dealkylation reactions in nature, and high-valent oxoiron(IV) species have been invoked as active oxidants that effect the oxygenation of organic substrates. The present study describes the first example of the oxidative N-dealkylation of N,N-dialkylamines by synthetic nonheme oxoiron(IV) complexes and the reactivity comparisons of nonheme and heme oxoiron(IV) complexes. Detailed mechanistic studies were performed with various N,N-dialkylaniline substrates such as para-substituted N,N-dimethylanilines, para-chloro-N-ethyl-N-methylaniline, para-chloro-N-cyclopropyl-N-isopropylaniline, and deuteriated N,N-dimethylanilines. The results of a linear free-energy correlation, inter- and intramolecular kinetic isotope effects, and product analysis studied with the mechanistic probes demonstrate that the oxidative N-dealkylation reactions by nonheme and heme oxoiron(IV) complexes occur via an electron transfer-proton transfer (ET-PT) mechanism.


Subject(s)
Heme/chemistry , Iron/chemistry , Nonheme Iron Proteins/chemistry , Oxygen/chemistry , Ligands , Macromolecular Substances/chemistry , Molecular Structure , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...