Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Phys Chem B ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995207

ABSTRACT

We quantify endocytosis-like nanoparticle (NP) uptake of model membranes as a function of temperature and, therefore, phase state. As model membranes, we use giant unilamellar vesicles (GUV) consisting of 1,2-dipentadecanoyl-sn-glycero-3-phosphocholine (15:0 PC). Time-series micrographs of the vesicle shrinkage show uptake rates that are a highly nonlinear function of temperature. A global maximum appears close to the main structural phase transition at T = Tm + 3 K = 37 °C and a minor peak at the pretransition T = Tp = 22 °C. The quality of linear fits to the shrinkage, and thus uptake kinetics, reveals a deviation from the linear trend at the vesicle shrinkage peaks. Taking values for the bending modulus as a function of temperature from literature and Helfrich's model allows us to draw qualitative conclusions on the membrane tension and the adhesion of the NP to the membrane as a function of temperature. These findings provide valuable insights into the dynamic interplay between temperature, membrane phase transitions, and NP uptake, shedding light on the complex behavior of biological membranes.

2.
Methods Mol Biol ; 2644: 225-236, 2023.
Article in English | MEDLINE | ID: mdl-37142925

ABSTRACT

The phase state and especially phase transitions of synthetic lipid membranes are known to drastically modulate mechanical membrane properties like permeability and bending modulus. Although the main transition of lipid membranes is typically detected employing differential scanning calorimetry (DSC), this technique is not suitable for many biological membranes. Moreover, often single cell data on the membrane state or order is of interest. We here first describe how to use a membrane polarity-sensitive dye, Laurdan, to optically determine the order of cell ensembles over a wide temperature range from T = -40 °C to +95 °C. This allows to quantify the position and width of biological membrane order-disorder transitions. Second, we show that the distribution of membrane order within a cell ensemble allows for correlation analysis of membrane order and permeability. Third, combining the technique with conventional atomic force spectroscopy allows for the quantitative correlation of an overall effective Young's modulus of living cells with the membrane order.


Subject(s)
Lipids , Cell Membrane/chemistry , Elasticity , Elastic Modulus , Permeability , Lipids/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...