Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 198(11): 4481-4489, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28461568

ABSTRACT

The interaction between tumor cells and their surrounding microenvironment is essential for the growth and persistence of cancer cells. This interaction is mediated, in part, by cytokines. Although the role of cytokines in normal and malignant cell biology is well established, many of the molecular mechanisms regulating their expression remain elusive. In this article, we provide evidence of a novel pathway controlling the transcriptional activation of CD40L in bone marrow-derived stromal cells. Using a PCR-based screening of cytokines known to play a role in the biology of bone marrow malignancies, we identified CD40L as a novel GLI2 target gene in stromal cells. CD40L plays an important role in malignant B cell biology, and we found increased Erk phosphorylation and cell growth in malignant B cells cocultured with CD40L-expressing stromal cells. Further analysis indicated that GLI2 overexpression induced increased CD40L expression, and, conversely, GLI2 knockdown reduced CD40L expression. Using luciferase and chromatin immunoprecipitation assays, we demonstrate that GLI2 directly binds and regulates the activity of the CD40L promoter. We found that the CCR3-PI3K-AKT signaling modulates the GLI2-CD40L axis, and GLI2 is required for CCR3-PI3K-AKT-mediated regulation of the CD40L promoter. Finally, coculture of malignant B cells with cells stably expressing human CD40L results in increased Erk phosphorylation and increased malignant B cell growth, indicating that CD40L in the tumor microenvironment promotes malignant B cell activation. Therefore, our studies identify a novel molecular mechanism of regulation of CD40L by the transcription factor GLI2 in the tumor microenvironment downstream of CCR3 signaling.


Subject(s)
CD40 Ligand/genetics , Kruppel-Like Transcription Factors/metabolism , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/metabolism , Nuclear Proteins/metabolism , Signal Transduction , Animals , B-Lymphocytes/pathology , CD40 Ligand/immunology , CD40 Ligand/metabolism , Chromatin Immunoprecipitation , Cytokines/immunology , Gene Expression Regulation, Neoplastic , Kruppel-Like Transcription Factors/genetics , MAP Kinase Signaling System , Mice , Nuclear Proteins/genetics , Phosphorylation , Polymerase Chain Reaction , Proto-Oncogene Proteins c-akt/metabolism , Receptors, CCR3/metabolism , Zinc Finger Protein Gli2
2.
J Immunol ; 195(6): 2908-16, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26238488

ABSTRACT

Ig secretion by terminally differentiated B cells is an important component of the immune response to foreign pathogens. Its overproduction is a defining characteristic of several B cell malignancies, including Waldenström macroglobulinemia (WM), where elevated IgM is associated with significant morbidity and poor prognosis. Therefore, the identification and characterization of the mechanisms controlling Ig secretion are of great importance for the development of future therapeutic approaches for this disease. In this study, we define a novel pathway involving the oncogenic transcription factor GLI2 modulating IgM secretion by WM malignant cells. Pharmacological and genetic inhibition of GLI2 in WM malignant cells resulted in a reduction in IgM secretion. Screening for a mechanism identified the IL-6Rα (gp80) subunit as a downstream target of GLI2 mediating the regulation of IgM secretion. Using a combination of expression, luciferase, and chromatin immunoprecipitation assays we demonstrate that GLI2 binds to the IL-6Rα promoter and regulates its activity as well as the expression of this receptor. Additionally, we were able to rescue the reduction in IgM secretion in the GLI2 knockdown group by overexpressing IL-6Rα, thus defining the functional significance of this receptor in GLI2-mediated regulation of IgM secretion. Interestingly, this occurred independent of Hedgehog signaling, a known regulator of GLI2, as manipulation of Hedgehog had no effect on IgM secretion. Given the poor prognosis associated with elevated IgM in WM patients, components of this new signaling axis could be important therapeutic targets.


Subject(s)
B-Lymphocytes/immunology , Immunoglobulin M/immunology , Kruppel-Like Transcription Factors/immunology , Receptors, Interleukin-6/immunology , Waldenstrom Macroglobulinemia/pathology , Animals , Cell Line , Chromatin Immunoprecipitation , Female , Hedgehog Proteins/genetics , Humans , Hyaluronan Receptors/immunology , Immunoglobulin M/biosynthesis , Kruppel-Like Transcription Factors/antagonists & inhibitors , Kruppel-Like Transcription Factors/genetics , Lymphocyte Activation/immunology , Mice , Mice, Inbred BALB C , Promoter Regions, Genetic/genetics , Protein Binding/immunology , Receptors, Interleukin-6/biosynthesis , Signal Transduction/immunology , Waldenstrom Macroglobulinemia/metabolism , Zinc Finger Protein Gli2
SELECTION OF CITATIONS
SEARCH DETAIL
...