Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 14(12): e0225645, 2019.
Article in English | MEDLINE | ID: mdl-31790447

ABSTRACT

Coralline algae (Corallinophycideae) are calcifying red algae that are foundation species in euphotic marine habitats globally. In recent years, corallines have received increasing attention due to their vulnerability to global climate change, in particular ocean acidification and warming, and because of the range of ecological functions that coralline algae provide, including provisioning habitat, influencing settlement of invertebrate and other algal species, and stabilising reef structures. Many of the ecological roles corallines perform, as well as their responses to stressors, have been demonstrated to be species-specific. In order to understand the roles and responses of coralline algae, it is essential to be able to reliably distinguish individual species, which are frequently morphologically cryptic. The aim of this study was to document the diversity and distribution of coralline algae in the New Zealand region using DNA based phylogenetic methods, and examine this diversity in a broader global context, discussing the implications and direction for future coralline algal research. Using three independent species delimitation methods, a total of 122 species of coralline algae were identified across the New Zealand region with high diversity found both regionally and also when sampling at small local spatial scales. While high diversity identified using molecular methods mirrors recent global discoveries, what distinguishes the results reported here is the large number of taxa (115) that do not resolve with type material from any genus and/or species. The ability to consistently and accurately distinguish species, and the application of authoritative names, are essential to ensure reproducible science in all areas of research into ecologically important yet vulnerable coralline algae taxa.


Subject(s)
Biodiversity , Coral Reefs , Ecological Parameter Monitoring/methods , Rhodophyta/physiology , Climate Change , Geography , Hydrogen-Ion Concentration , New Zealand , Oceans and Seas , Phylogeny , Seawater/chemistry , Temperature
2.
J Phycol ; 51(3): 454-68, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26986662

ABSTRACT

Coralline red algae from the New Zealand region were investigated in a study focused on documenting regional diversity. We present a multi-gene analysis using sequence data obtained for four genes (nSSU, psaA, psbA, rbcL) from 68 samples. The study revealed cryptic diversity at both genus and species levels, confirming and providing further evidence of problems with current taxonomic concepts in the Corallinophycidae. In addition, a new genus Corallinapetra novaezelandiae gen. et sp. nov. is erected for material from northern New Zealand. Corallinapetra is excluded from all currently recognized families and orders within the Corallinophycidae and thus represents a previously unrecognized lineage within this subclass. We discuss rank in the Corallinophycidae and propose the order Hapalidiales.

3.
PhytoKeys ; (30): 1-21, 2013.
Article in English | MEDLINE | ID: mdl-24399897

ABSTRACT

Herbaria and natural history collections (NHC) are critical to the practice of taxonomy and have potential to serve as sources of data for biodiversity and conservation. They are the repositories of vital reference specimens, enabling species to be studied and their distribution in space and time to be documented and analysed, as well as enabling the development of hypotheses about species relationships. The herbarium of the Museum of New Zealand Te Papa Tongarewa (WELT) contains scientifically and historically significant marine macroalgal collections, including type specimens, primarily of New Zealand species, as well as valuable exsiccatae from New Zealand and Australia. The herbarium was initiated in 1865 with the establishment of the Colonial Museum and is the only herbarium in New Zealand where there has been consistent expert taxonomic attention to the macroalgae over the past 50 years. We examined 19,422 records of marine macroalgae from around New Zealand collected over the past 164 years housed in WELT, assessing the records in terms of their spatial and temporal coverage as well as their uniqueness and abundance. The data provided an opportunity to review the state of knowledge of the New Zealand macroalgal flora reflected in the collections at WELT, to examine how knowledge of the macroalgal flora has been built over time in terms of the number of collections and the number of species recognised, and identify where there are gaps in the current collections as far as numbers of specimens per taxon, as well as with respect to geographical and seasonal coverage.

4.
Mol Phylogenet Evol ; 46(3): 958-73, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18243019

ABSTRACT

A number of molecular studies of the Corallinales, a calcified order of the red algae, have used the conservative nSSU gene to investigate relationships within the order. However interspecific variation at this locus is low for closely related species, limiting resolution of recently diverged groups. In this study, we obtained psbA sequence data from specimens of the order from New Zealand that had been identified according to current taxonomic criteria. We compared phylogenetic analyses based on psbA with those based on nSSU for the same dataset, and also analysed nSSU sequences of the New Zealand material with nSSU sequences of Corallinales taxa from other parts of the world. Our study shows that psbA has considerable potential as a marker for this group, being easily amplified and considerably more variable than nSSU. Combined analyses using both markers provide significant support for relationships at both distal and terminal nodes of the analysis. Our analysis supports the monophyly of all three families currently defined in Corallinales: the Sporolithaceae, Hapalidiaceae and Corallinaceae, and indicates cryptic speciation in Mesophyllum and Spongites.


Subject(s)
Photosystem II Protein Complex/genetics , Phylogeny , RNA, Ribosomal/genetics , Rhodophyta/genetics , DNA, Algal/chemistry , DNA, Algal/genetics , Likelihood Functions , Molecular Sequence Data , New Zealand , Rhodophyta/classification , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...