Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Nat Commun ; 13(1): 134, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013307

ABSTRACT

Combined methylmalonic acidemia and homocystinuria (cblC) is the most common inborn error of intracellular cobalamin metabolism and due to mutations in Methylmalonic Aciduria type C and Homocystinuria (MMACHC). Recently, mutations in the transcriptional regulators HCFC1 and RONIN (THAP11) were shown to result in cellular phenocopies of cblC. Since HCFC1/RONIN jointly regulate MMACHC, patients with mutations in these factors suffer from reduced MMACHC expression and exhibit a cblC-like disease. However, additional de-regulated genes and the resulting pathophysiology is unknown. Therefore, we have generated mouse models of this disease. In addition to exhibiting loss of Mmachc, metabolic perturbations, and developmental defects previously observed in cblC, we uncovered reduced expression of target genes that encode ribosome protein subunits. We also identified specific phenotypes that we ascribe to deregulation of ribosome biogenesis impacting normal translation during development. These findings identify HCFC1/RONIN as transcriptional regulators of ribosome biogenesis during development and their mutation results in complex syndromes exhibiting aspects of both cblC and ribosomopathies.


Subject(s)
Amino Acid Metabolism, Inborn Errors/genetics , Homocystinuria/genetics , Host Cell Factor C1/genetics , Oxidoreductases/genetics , Repressor Proteins/genetics , Ribosomes/genetics , Vitamin B 12 Deficiency/genetics , Amino Acid Metabolism, Inborn Errors/metabolism , Amino Acid Metabolism, Inborn Errors/pathology , Animals , Disease Models, Animal , Embryo, Mammalian , Female , Gene Expression Regulation, Developmental , Homocystinuria/metabolism , Homocystinuria/pathology , Host Cell Factor C1/deficiency , Humans , Male , Mice , Mice, Knockout , Mutation , Organelle Biogenesis , Oxidoreductases/deficiency , Protein Biosynthesis , Protein Subunits/genetics , Protein Subunits/metabolism , Repressor Proteins/deficiency , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Ribosomes/metabolism , Ribosomes/pathology , Vitamin B 12/metabolism , Vitamin B 12 Deficiency/metabolism , Vitamin B 12 Deficiency/pathology
2.
Nat Cancer ; 1(7): 709-722, 2020 07.
Article in English | MEDLINE | ID: mdl-35122036

ABSTRACT

Polyclonal metastases frequently arise from clusters of circulating tumor cells (CTCs). CTC clusters metastasize better than single CTCs, but the underlying molecular mechanisms are poorly understood. Here, we show that polyclonal metastatic seeds exhibit higher resistance to natural killer (NK) cell killing. Using breast cancer models, we observed higher proportions of polyclonal lung metastasis in immunocompetent mice compared with mice lacking NK cells. Depleting NK cells selectively increased monoclonal but not polyclonal metastases, suggesting that CTC clusters are less sensitive to NK-mediated suppression. Transcriptional analyses revealed that clusters have elevated expression of cell-cell adhesion and epithelial genes, which is associated with decreased expression of NK cell activating ligands. Furthermore, perturbing tumor cell epithelial status altered NK ligand expression and sensitivity to NK-mediated killing. Collectively, our findings show that NK cells can determine the fate of CTCs of different epithelial and mesenchymal states, and impact metastatic clonal evolution by favoring polyclonal seeding.


Subject(s)
Lung Neoplasms , Neoplastic Cells, Circulating , Animals , Cell Count , Killer Cells, Natural , Lung Neoplasms/metabolism , Mice , Monitoring, Immunologic
3.
Nucleic Acids Res ; 48(5): 2621-2642, 2020 03 18.
Article in English | MEDLINE | ID: mdl-31863590

ABSTRACT

Transposable elements (TEs) comprise a large proportion of long non-coding RNAs (lncRNAs). Here, we employed CRISPR to delete a short interspersed nuclear element (SINE) in Malat1, a cancer-associated lncRNA, to investigate its significance in cellular physiology. We show that Malat1 with a SINE deletion forms diffuse nuclear speckles and is frequently translocated to the cytoplasm. SINE-deleted cells exhibit an activated unfolded protein response and PKR and markedly increased DNA damage and apoptosis caused by dysregulation of TDP-43 localization and formation of cytotoxic inclusions. TDP-43 binds stronger to Malat1 without the SINE and is likely 'hijacked' by cytoplasmic Malat1 to the cytoplasm, resulting in the depletion of nuclear TDP-43 and redistribution of TDP-43 binding to repetitive element transcripts and mRNAs encoding mitotic and nuclear-cytoplasmic regulators. The SINE promotes Malat1 nuclear retention by facilitating Malat1 binding to HNRNPK, a protein that drives RNA nuclear retention, potentially through direct interactions of the SINE with KHDRBS1 and TRA2A, which bind to HNRNPK. Losing these RNA-protein interactions due to the SINE deletion likely creates more available TDP-43 binding sites on Malat1 and subsequent TDP-43 aggregation. These results highlight the significance of lncRNA TEs in TDP-43 proteostasis with potential implications in both cancer and neurodegenerative diseases.


Subject(s)
DNA-Binding Proteins/metabolism , Proteostasis/genetics , RNA, Long Noncoding/genetics , Short Interspersed Nucleotide Elements/genetics , Apoptosis , Cell Line , Cytoplasm/metabolism , DNA Damage , Endoplasmic Reticulum Stress , Enzyme Activation , Gene Dosage , Heterogeneous-Nuclear Ribonucleoprotein K/metabolism , Humans , Mitosis , Models, Biological , Protein Transport , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Deletion/genetics , eIF-2 Kinase
4.
Cell Metab ; 29(6): 1274-1290.e9, 2019 06 04.
Article in English | MEDLINE | ID: mdl-30930169

ABSTRACT

Telomere shortening is associated with stem cell decline, fibrotic disorders, and premature aging through mechanisms that are incompletely understood. Here, we show that telomere shortening in livers of telomerase knockout mice leads to a p53-dependent repression of all seven sirtuins. P53 regulates non-mitochondrial sirtuins (Sirt1, 2, 6, and 7) post-transcriptionally through microRNAs (miR-34a, 26a, and 145), while the mitochondrial sirtuins (Sirt3, 4, and 5) are regulated in a peroxisome proliferator-activated receptor gamma co-activator 1 alpha-/beta-dependent manner at the transcriptional level. Administration of the NAD(+) precursor nicotinamide mononucleotide maintains telomere length, dampens the DNA damage response and p53, improves mitochondrial function, and, functionally, rescues liver fibrosis in a partially Sirt1-dependent manner. These studies establish sirtuins as downstream targets of dysfunctional telomeres and suggest that increasing Sirt1 activity alone or in combination with other sirtuins stabilizes telomeres and mitigates telomere-dependent disorders.


Subject(s)
Liver Cirrhosis/genetics , Sirtuins/genetics , Telomere Shortening/physiology , Animals , Cells, Cultured , Down-Regulation/drug effects , Down-Regulation/genetics , Embryo, Mammalian , Female , Gene Expression Regulation, Enzymologic/drug effects , HEK293 Cells , Humans , Liver/drug effects , Liver/metabolism , Liver/pathology , Liver Cirrhosis/pathology , Liver Cirrhosis/prevention & control , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria, Liver/drug effects , Mitochondria, Liver/metabolism , Nicotinamide Mononucleotide/pharmacology , Sirtuin 1/genetics , Sirtuin 1/metabolism , Sirtuins/metabolism , Telomerase/genetics , Telomerase/metabolism , Telomere Homeostasis/drug effects , Telomere Homeostasis/physiology , Telomere Shortening/drug effects , Telomere Shortening/genetics
5.
Life Sci Alliance ; 2(1)2019 02.
Article in English | MEDLINE | ID: mdl-30777858

ABSTRACT

The prevailing model of microRNA function is that the "seed region" (nt 2-8) is sufficient to mediate target recognition and repression. However, numerous recent studies have challenged this model, either by demonstrating extensive 3' pairing between physically defined miRNA-mRNA pairs or by showing in Caenorhabditis elegans that disrupted 3' pairing can result in impaired function in vivo. To test the importance of miRNA 3' pairing in a mammalian system in vivo, we engineered a mutant murine mir-146a allele in which the 5' half of the mature microRNA retains its wild-type sequence, but the 3' half's sequence has been altered to robustly disrupt predicted pairing to this latter region. Mice homozygous or hemizygous for this mutant allele are phenotypically indistinguishable from wild-type controls and do not recapitulate any of the immunopathology previously described for mir-146a-null mice. Our results indicate that 3' pairing is dispensable for the established myeloid function of this key mammalian microRNA.


Subject(s)
3' Untranslated Regions/genetics , Immunity, Innate/genetics , MicroRNAs/genetics , Alleles , Animals , Female , Gene Knockout Techniques , HeLa Cells , Heterozygote , Homozygote , Humans , Kaplan-Meier Estimate , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation , Phenotype , RNA, Messenger/genetics , Transfection
6.
Biochem Pharmacol ; 162: 123-131, 2019 04.
Article in English | MEDLINE | ID: mdl-30326201

ABSTRACT

Stress granules are macromolecular aggregates of mRNA and proteins assembling in response to stresses that promote the repression of protein synthesis. Most of the work characterizing stress granules has been done under acute stress conditions or during viral infection. Comparatively less work has been done to understand stress granule assembly during chronic stress, specifically regarding the composition and function of stress granules in this alternative context. Here, we describe key aspects of stress granule biology under acute stress, and how these stress granule hallmarks differ in the context of chronic stress conditions. We will provide perspective for future work aimed at further uncovering the form and function of both acute and chronic stress granules and discuss aspects of stress granule biology that have the potential to be exploited in human disease.


Subject(s)
Oxidative Stress/physiology , Protein Biosynthesis/physiology , RNA, Messenger/metabolism , Stress, Physiological/physiology , Animals , Humans , RNA, Messenger/genetics
7.
Nat Commun ; 9(1): 4351, 2018 10 19.
Article in English | MEDLINE | ID: mdl-30341294

ABSTRACT

The mechanistic target of rapamycin complex 1 (mTORC1) regulates cell survival and autophagy, and its activity is regulated by amino acid availability. Rag GTPase-GATOR1 interactions inhibit mTORC1 in the absence of amino acids, and GATOR1 release and activation of RagA/B promotes mTORC1 activity in the presence of amino acids. However, the factors that play a role in Rag-GATOR1 interaction are still poorly characterized. Here, we show that the tyrosine kinase Src is crucial for amino acid-mediated activation of mTORC1. Src acts upstream of the Rag GTPases by promoting dissociation of GATOR1 from the Rags, thereby determining mTORC1 recruitment and activation at the lysosomal surface. Accordingly, amino acid-mediated regulation of Src/mTORC1 modulates autophagy and cell size expansion. Finally, Src hyperactivation overrides amino acid signaling in the activation of mTORC1. These results shed light on the mechanisms underlying pathway dysregulation in many cancer types.


Subject(s)
Mechanistic Target of Rapamycin Complex 1/metabolism , src-Family Kinases/physiology , Autophagy , Cell Cycle , Signal Transduction , src-Family Kinases/metabolism
8.
J Cell Sci ; 131(19)2018 10 05.
Article in English | MEDLINE | ID: mdl-30185525

ABSTRACT

Stress granules (SGs) assemble under stress-induced conditions that inhibit protein synthesis, including phosphorylation of eIF2α, inhibition of the RNA helicase eIF4a proteins or inactivation of mTORC1. Classically defined SGs are composed of translation initiation factors, 40S ribosomes, RNA-binding proteins and poly(A)+ mRNAs. As such, they represent an important compartment for storage of mRNAs and regulation of their translation. Emerging work on SGs indicates that these structures might promote cellular survival in diverse disease states. Yet, much work on SG formation and function employs acute stress conditions, which might not accurately reflect the chronic stresses that manifest in human disease. Here, we used prolonged nutrient starvation to model and investigate SG formation and function during chronic stress in a human cell line and mouse embryonic fibroblasts. Surprisingly, we found that SGs that form under chronic nutrient starvation lack 40S ribosomes, do not actively exchange their constituent components with cytoplasmic pools and promote cell death. We named these SGs starvation-induced SGs (stSGs). Our results on stSGs imply that SG assembly and function in the context of prolonged nutrient starvation stress differ significantly from what has been described for acute stress conditions.


Subject(s)
Apoptosis , Cytoplasmic Granules/metabolism , Animals , Cell Line, Tumor , Eukaryotic Initiation Factor-2/metabolism , Humans , Kinetics , Mice , Protein Biosynthesis , Ribosomes/metabolism
9.
Cancer Res ; 78(15): 4229-4240, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29844125

ABSTRACT

Cooperativity between WNT and FGF signaling is well documented in embryonic development and cancer progression, but the molecular mechanisms underlying this cross-talk remain elusive. In this study, we interrogated the dynamics of RNA levels, ribosome occupancy, and protein expression as a function of inducible FGF signaling in mouse mammary glands with constitutive WNT hyperactivation. Multiomics correlation analysis revealed a substantial discrepancy between RNA and ribosome occupancy levels versus protein levels. However, this discrepancy decreased as cells became premalignant and dynamically responded to FGF signaling, implicating the importance of stringent gene regulation in nontransformed cells. Analysis of individual genes demonstrated that acute FGF hyperactivation increased translation of many stem cell self-renewal regulators, including WNT signaling components, and decreased translation of genes regulating cellular senescence. WNT pathway components translationally upregulated by FGF signaling had long and structured 5' UTRs with a high frequency of polypurine sequences, several of which harbored (CGG)4 motifs that can fold into either stable G-quadruplexes or other stable secondary structures. The FGF-mediated increase in translation of WNT pathway components was compromised by silvestrol, an inhibitor of EIF4A that clamps EIF4A to polypurine sequences to block 43S scanning and inhibits its RNA-unwinding activity important for translation initiation. Moreover, silvestrol treatment significantly delayed FGF-WNT-driven tumorigenesis. Taken together, these results suggest that FGF signaling selectively enhances translation of structured mRNAs, particularly WNT signaling components, and highlight their vulnerability to inhibitors that target the RNA helicase EIF4A.Significance: The RNA helicase EIF4A may serve as a therapeutic target for breast cancers that require FGF and WNT signaling. Cancer Res; 78(15); 4229-40. ©2018 AACR.


Subject(s)
5' Untranslated Regions/genetics , Eukaryotic Initiation Factor-4A/genetics , Protein Biosynthesis/genetics , Receptor, Fibroblast Growth Factor, Type 1/genetics , Wnt Signaling Pathway/genetics , 5' Untranslated Regions/drug effects , Animals , Mice , Protein Biosynthesis/drug effects , RNA Helicases/genetics , RNA, Messenger/genetics , Ribosomes/drug effects , Ribosomes/genetics , Triterpenes/pharmacology , Wnt Signaling Pathway/drug effects
10.
Nat Genet ; 50(6): 783-789, 2018 06.
Article in English | MEDLINE | ID: mdl-29785014

ABSTRACT

Widespread mRNA 3' UTR shortening through alternative polyadenylation 1 promotes tumor growth in vivo 2 . A prevailing hypothesis is that it induces proto-oncogene expression in cis through escaping microRNA-mediated repression. Here we report a surprising enrichment of 3'UTR shortening among transcripts that are predicted to act as competing-endogenous RNAs (ceRNAs) for tumor-suppressor genes. Our model-based analysis of the trans effect of 3' UTR shortening (MAT3UTR) reveals a significant role in altering ceRNA expression. MAT3UTR predicts many trans-targets of 3' UTR shortening, including PTEN, a crucial tumor-suppressor gene 3 involved in ceRNA crosstalk 4 with nine 3'UTR-shortening genes, including EPS15 and NFIA. Knockdown of NUDT21, a master 3' UTR-shortening regulator 2 , represses tumor-suppressor genes such as PHF6 and LARP1 in trans in a miRNA-dependent manner. Together, the results of our analysis suggest a major role of 3' UTR shortening in repressing tumor-suppressor genes in trans by disrupting ceRNA crosstalk, rather than inducing proto-oncogenes in cis.


Subject(s)
3' Untranslated Regions , Genes, Tumor Suppressor , Neoplasms/genetics , RNA/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , HeLa Cells , Humans , MCF-7 Cells , MicroRNAs/genetics , Proto-Oncogene Mas , Proto-Oncogenes/genetics , RNA, Messenger/genetics
12.
Mol Nutr Food Res ; 61(9)2017 09.
Article in English | MEDLINE | ID: mdl-28319645

ABSTRACT

SCOPE: The uptake of dietary plant small RNAs (sRNAs) in consumers remains controversial, which is mainly due to low dietary content in combination with poor fractional absorption. MIR2911, among all the plant sRNAs including microRNAs, has been shown to be one of the most robustly absorbed sRNAs. Here we analyze the unusual abundance and unique genesis of MIR2911 during vegetable processing. METHODS AND RESULTS: Using qRT-PCR, the abundance of MIR2911 increased dramatically in macerated tissues while other microRNAs degraded. The accumulation of MIR2911 correlated with the degradation of the rRNAs, consistent with MIR2911 being derived from the 26S rRNA. Bioinformatic analysis predicts a microRNA-like precursor structure for MIR2911; however, no reciprocal increase in the putative star-strand was noted, and using an Arabidopsis mutation deficient in miRNA processing the accumulation of MIR2911 appeared Dicer independent. MIR2911 was incorporated into the mammalian RNA-induced silencing complex as demonstrated in HEK293T cells, where transfected synthetic MIR2911 modestly suppressed the activity of a cognate luciferase reporter. CONCLUSION: The genesis and amplification of MIR2911 post-harvest is atypical, as traditional plant bioactives are less plentiful as vegetables lose freshness. These findings offer an explanation to the disparity in serum detection between MIR2911 and canonical plant-based miRNAs.


Subject(s)
MicroRNAs/physiology , RNA, Plant/physiology , Biological Availability , Brassica/genetics , Food Handling , HEK293 Cells , Humans , MicroRNAs/analysis , RNA, Plant/analysis
13.
Nat Commun ; 8: 14338, 2017 02 06.
Article in English | MEDLINE | ID: mdl-28165011

ABSTRACT

Neurodegenerative diseases characterized by aberrant accumulation of undigested cellular components represent unmet medical conditions for which the identification of actionable targets is urgently needed. Here we identify a pharmacologically actionable pathway that controls cellular clearance via Akt modulation of transcription factor EB (TFEB), a master regulator of lysosomal pathways. We show that Akt phosphorylates TFEB at Ser467 and represses TFEB nuclear translocation independently of mechanistic target of rapamycin complex 1 (mTORC1), a known TFEB inhibitor. The autophagy enhancer trehalose activates TFEB by diminishing Akt activity. Administration of trehalose to a mouse model of Batten disease, a prototypical neurodegenerative disease presenting with intralysosomal storage, enhances clearance of proteolipid aggregates, reduces neuropathology and prolongs survival of diseased mice. Pharmacological inhibition of Akt promotes cellular clearance in cells from patients with a variety of lysosomal diseases, thus suggesting broad applicability of this approach. These findings open new perspectives for the clinical translation of TFEB-mediated enhancement of cellular clearance in neurodegenerative storage diseases.


Subject(s)
Autophagy/drug effects , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Neurodegenerative Diseases/drug therapy , Neuroprotective Agents/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Trehalose/pharmacology , Animals , Astrocytes , Autophagy/physiology , Brain/cytology , Brain/drug effects , Brain/pathology , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Disease Models, Animal , Fibroblasts , Gene Knockdown Techniques , HeLa Cells , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Membrane Glycoproteins/genetics , Mice , Mice, Transgenic , Molecular Chaperones/genetics , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Neurons , Neuroprotective Agents/therapeutic use , Phosphorylation , Primary Cell Culture , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Trehalose/therapeutic use
14.
Nat Commun ; 7: 13362, 2016 11 21.
Article in English | MEDLINE | ID: mdl-27869122

ABSTRACT

The importance of translational regulation in tumour biology is increasingly appreciated. Here, we leverage polyribosomal profiling to prospectively define translational regulatory programs underlying epithelial-to-mesenchymal transition (EMT) in breast epithelial cells. We identify a group of ten translationally regulated drivers of EMT sharing a common GU-rich cis-element within the 3'-untranslated region (3'-UTR) of their mRNA. These cis-elements, necessary for the regulatory activity imparted by these 3'-UTRs, are directly bound by the CELF1 protein, which itself is regulated post-translationally during the EMT program. CELF1 is necessary and sufficient for both mesenchymal transition and metastatic colonization, and CELF1 protein, but not mRNA, is significantly overexpressed in human breast cancer tissues. Our data present an 11-component genetic pathway, invisible to transcriptional profiling approaches, in which the CELF1 protein functions as a central node controlling translational activation of genes driving EMT and ultimately tumour progression.


Subject(s)
CELF1 Protein/metabolism , Epithelial-Mesenchymal Transition/physiology , Gene Expression Regulation/physiology , Animals , Breast Neoplasms , CELF1 Protein/genetics , Cell Line, Tumor , Cell Movement , Cell Proliferation , Cell Survival , Epithelial Cells , Female , Gene Regulatory Networks , Humans , Mice , Neoplasms, Experimental , Prospective Studies , Protein Array Analysis , Protein Biosynthesis , RNA, Messenger/genetics , RNA, Messenger/metabolism
15.
Cell Death Dis ; 7(10): e2426, 2016 10 20.
Article in English | MEDLINE | ID: mdl-27763639

ABSTRACT

Myoblasts are mononucleated precursors of myofibers; they persist in mature skeletal muscles for growth and regeneration post injury. During myotonic dystrophy type 1 (DM1), a complex autosomal-dominant neuromuscular disease, the differentiation of skeletal myoblasts into functional myotubes is impaired, resulting in muscle wasting and weakness. The mechanisms leading to this altered differentiation are not fully understood. Here, we demonstrate that the calcium- and voltage-dependent potassium channel, KCa1.1 (BK, Slo1, KCNMA1), regulates myoblast proliferation, migration, and fusion. We also show a loss of plasma membrane expression of the pore-forming α subunit of KCa1.1 in DM1 myoblasts. Inhibiting the function of KCa1.1 in healthy myoblasts induced an increase in cytosolic calcium levels and altered nuclear factor kappa B (NFκB) levels without affecting cell survival. In these normal cells, KCa1.1 block resulted in enhanced proliferation and decreased matrix metalloproteinase secretion, migration, and myotube fusion, phenotypes all observed in DM1 myoblasts and associated with disease pathogenesis. In contrast, introducing functional KCa1.1 α-subunits into DM1 myoblasts normalized their proliferation and rescued expression of the late myogenic marker Mef2. Our results identify KCa1.1 channels as crucial regulators of skeletal myogenesis and suggest these channels as novel therapeutic targets in DM1.


Subject(s)
Cell Differentiation , Cell Movement , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism , Myoblasts, Skeletal/cytology , Myoblasts, Skeletal/metabolism , Calcium/metabolism , Cell Fusion , Cell Membrane/metabolism , Cell Proliferation , Cells, Cultured , Humans , Intracellular Space/metabolism , Matrix Metalloproteinase 2/metabolism , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/metabolism , Myotonic Dystrophy/pathology , NF-kappa B/metabolism
16.
J Clin Invest ; 126(7): 2678-88, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27294526

ABSTRACT

Hypoxia occurs in many pathological conditions, including chronic inflammation and tumors, and is considered to be an inhibitor of T cell function. However, robust T cell responses occur at many hypoxic inflammatory sites, suggesting that functions of some subsets are stimulated under low oxygen conditions. Here, we investigated how hypoxic conditions influence human T cell functions and found that, in contrast to naive and central memory T cells (TN and TCM), hypoxia enhances the proliferation, viability, and cytotoxic action of effector memory T cells (TEM). Enhanced TEM expansion in hypoxia corresponded to high hypoxia-inducible factor 1α (HIF1α) expression and glycolytic activity compared with that observed in TN and TCM. We determined that the glycolytic enzyme GAPDH negatively regulates HIF1A expression by binding to adenylate-uridylate-rich elements in the 3'-UTR region of HIF1A mRNA in glycolytically inactive TN and TCM. Conversely, active glycolysis with decreased GAPDH availability in TEM resulted in elevated HIF1α expression. Furthermore, GAPDH overexpression reduced HIF1α expression and impaired proliferation and survival of T cells in hypoxia, indicating that high glycolytic metabolism drives increases in HIF1α to enhance TEM function during hypoxia. This work demonstrates that glycolytic metabolism regulates the translation of HIF1A to determine T cell responses to hypoxia and implicates GAPDH as a potential mechanism for controlling T cell function in peripheral tissue.


Subject(s)
Glycolysis/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia , T-Lymphocytes/metabolism , 3' Untranslated Regions , Animals , Cell Hypoxia , Cell Line, Tumor , Cell Proliferation , Cell Survival , Humans , Mice , Neoplasm Transplantation , Neuroblastoma/metabolism , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes/cytology
17.
Sci Rep ; 6: 22866, 2016 Mar 10.
Article in English | MEDLINE | ID: mdl-26960433

ABSTRACT

Oxidative stress and aberrant accumulation of misfolded proteins in the cytosol are key pathological features associated with Parkinson's disease (PD). NADPH oxidase (Nox2) is upregulated in the pathogenesis of PD; however, the underlying mechanism(s) of Nox2-mediated oxidative stress in PD pathogenesis are still unknown. Using a rotenone-inducible cellular model of PD, we observed that a short exposure to rotenone (0.5 µM) resulted in impaired autophagic flux through activation of a Nox2 dependent Src/PI3K/Akt axis, with a consequent disruption of a Beclin1-VPS34 interaction that was independent of mTORC1 activity. Sustained exposure to rotenone at a higher dose (10 µM) decreased mTORC1 activity; however, autophagic flux was still impaired due to dysregulation of lysosomal activity with subsequent induction of the apoptotic machinery. Cumulatively, our results highlight a complex pathogenic mechanism for PD where short- and long-term oxidative stress alters different signaling pathways, ultimately resulting in anomalous autophagic activity and disease phenotype. Inhibition of Nox2-dependent oxidative stress attenuated the impaired autophagy and cell death, highlighting the importance and therapeutic potential of these pathways for treating patients with PD.


Subject(s)
Membrane Glycoproteins/metabolism , Multiprotein Complexes/metabolism , NADPH Oxidases/metabolism , Parkinson Disease/metabolism , TOR Serine-Threonine Kinases/metabolism , Apoptosis , Autophagy , Cell Line, Tumor , Humans , Mechanistic Target of Rapamycin Complex 1 , NADPH Oxidase 2 , Oxidative Stress , Parkinson Disease/pathology , Rotenone/pharmacology
18.
Eur J Immunol ; 46(6): 1490-503, 2016 06.
Article in English | MEDLINE | ID: mdl-27005442

ABSTRACT

T lymphocytes stimulated through their antigen receptor (TCR) preferentially express mRNA isoforms with shorter 3´ untranslated regions (3´-UTRs) derived from alternative pre-mRNA cleavage and polyadenylation (APA). However, the physiological relevance of APA programs remains poorly understood. CD5 is a T-cell surface glycoprotein that negatively regulates TCR signaling from the onset of T-cell activation. CD5 plays a pivotal role in mediating outcomes of cell survival or apoptosis, and may prevent both autoimmunity and cancer. In human primary T lymphocytes and Jurkat cells we found three distinct mRNA isoforms encoding CD5, each derived from distinct poly(A) signals (PASs). Upon T-cell activation, there is an overall increase in CD5 mRNAs with a specific increase in the relative expression of the shorter isoforms. 3´-UTRs derived from these shorter isoforms confer higher reporter expression in activated T cells relative to the longer isoform. We further show that polypyrimidine tract binding protein (PTB/PTBP1) directly binds to the proximal PAS and PTB siRNA depletion causes a decrease in mRNA derived from this PAS, suggesting an effect on stability or poly(A) site selection to circumvent targeting of the longer CD5 mRNA isoform by miR-204. These mechanisms fine-tune CD5 expression levels and thus ultimately T-cell responses.


Subject(s)
CD5 Antigens/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , MicroRNAs/genetics , Polyadenylation , Polypyrimidine Tract-Binding Protein/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , 3' Untranslated Regions , Base Sequence , CD5 Antigens/metabolism , Gene Expression Regulation , Humans , Jurkat Cells , Models, Biological , Poly A , RNA Interference , RNA Isoforms , RNA, Messenger/genetics
19.
Methods Mol Biol ; 1358: 109-28, 2016.
Article in English | MEDLINE | ID: mdl-26463380

ABSTRACT

Posttranscriptional control of mRNA subcellular localization, stability, and translation is a central aspect of gene regulation and expression. Much of this control is mediated via recognition of a given mRNA transcript's 3' untranslated region (UTR) by microRNAs and RNA-binding proteins. Here we describe how a novel, scalable piggyBac-based vector, pBUTR, can be utilized for analysis of 3' UTR-mediated posttranscriptional gene regulation (PTGR) both in vitro and in vivo. This vector is specifically designed to express a selection marker, a control reporter, and an experimental reporter from three independent transcription units. Expression of spliced reporter transcripts from medium-copy non-viral promoter elements circumvents several potential confounding factors associated with saturation and stability, while stable integration of these reporter and selection elements in the context of a DNA transposon facilitates experimental reproducibility.


Subject(s)
Flow Cytometry/methods , Gene Expression Profiling/methods , RNA Processing, Post-Transcriptional/genetics , RNA, Messenger/genetics , 3' Untranslated Regions/genetics , Cell Line , Gene Expression Regulation/genetics , Genes, Reporter/genetics , Humans , Protein Biosynthesis/genetics , RNA-Binding Proteins/biosynthesis , RNA-Binding Proteins/genetics , Transfection
20.
Nature ; 525(7569): 384-8, 2015 Sep 17.
Article in English | MEDLINE | ID: mdl-26331541

ABSTRACT

MYC (also known as c-MYC) overexpression or hyperactivation is one of the most common drivers of human cancer. Despite intensive study, the MYC oncogene remains recalcitrant to therapeutic inhibition. MYC is a transcription factor, and many of its pro-tumorigenic functions have been attributed to its ability to regulate gene expression programs. Notably, oncogenic MYC activation has also been shown to increase total RNA and protein production in many tissue and disease contexts. While such increases in RNA and protein production may endow cancer cells with pro-tumour hallmarks, this increase in synthesis may also generate new or heightened burden on MYC-driven cancer cells to process these macromolecules properly. Here we discover that the spliceosome is a new target of oncogenic stress in MYC-driven cancers. We identify BUD31 as a MYC-synthetic lethal gene in human mammary epithelial cells, and demonstrate that BUD31 is a component of the core spliceosome required for its assembly and catalytic activity. Core spliceosomal factors (such as SF3B1 and U2AF1) associated with BUD31 are also required to tolerate oncogenic MYC. Notably, MYC hyperactivation induces an increase in total precursor messenger RNA synthesis, suggesting an increased burden on the core spliceosome to process pre-mRNA. In contrast to normal cells, partial inhibition of the spliceosome in MYC-hyperactivated cells leads to global intron retention, widespread defects in pre-mRNA maturation, and deregulation of many essential cell processes. Notably, genetic or pharmacological inhibition of the spliceosome in vivo impairs survival, tumorigenicity and metastatic proclivity of MYC-dependent breast cancers. Collectively, these data suggest that oncogenic MYC confers a collateral stress on splicing, and that components of the spliceosome may be therapeutic entry points for aggressive MYC-driven cancers.


Subject(s)
Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Genes, myc/genetics , Spliceosomes/drug effects , Spliceosomes/metabolism , Animals , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Survival/drug effects , Cell Transformation, Neoplastic/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , HeLa Cells , Humans , Introns/genetics , Mice , Mice, Nude , Neoplasm Metastasis/drug therapy , Nuclear Proteins/metabolism , Phosphoproteins/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , RNA Precursors/biosynthesis , RNA Precursors/genetics , RNA Splicing/drug effects , RNA Splicing Factors , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Ribonucleoprotein, U2 Small Nuclear/metabolism , Ribonucleoproteins/metabolism , Splicing Factor U2AF , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...