Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Nano Mater ; 6(23): 21763-21774, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38093805

ABSTRACT

Monolayers of graphene oxide, assembled into densely packed sheets at an immiscible hexane/water interface, form transparent conducting films on polydimethylsiloxane membranes after reduction in hydroiodic acid (HI) vapor to reduced graphene oxide (rGO). Prestraining and relaxing the membranes introduces cracks in the rGO film. Subsequent straining opens these cracks and induces piezoresistivity, enabling their application as transparent strain gauges. The sensitivity and strain range of these gauges is controlled by the cracked film structure that is determined by the reducing conditions used in manufacture. Reduction for 30 s in HI vapor leads to an array of parallel cracks that do not individually span the membrane. These cracks do not extend on subsequent straining, leading to a gauge with a usable strain range >0.2 and gauge factor (GF) at low strains ranging from 20 to 100, depending on the prestrain applied. The GF reduces with increasing applied strain and asymptotes to about 3, for all prestrains. Reduction for 60 s leads to cracks spanning the entire membrane and an increased film resistance but a highly sensitive strain gauge, with GF ranging from 800 to 16,000. However, the usable strain range reduces to <0.01. A simple equivalent resistor model is proposed to describe the behavior of both gauge types. The gauges show a repeatable and stable response with loading frequencies >1 kHz and have been used to detect human body strains in a simple e-skin demonstration.

2.
Sci Total Environ ; 904: 166706, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37659560

ABSTRACT

Coastal ecosystems are becoming increasingly threatened by human activities and there is growing appreciation that management must consider the impacts of multiple stressors. Cumulative effects assessments (CEAs) have become a popular tool for identifying the distribution and intensity of multiple human stressors in coastal ecosystems. Few studies, however, have demonstrated strong correlations between CEAs and change in ecosystem condition, questioning its management use. Here, we apply a CEA to the endangered seagrass Posidonia australis in Pittwater, NSW, Australia, using spatial data on known stressors to seagrass related to foreshore development, water quality, vessel traffic and fishing. We tested how well cumulative effects scores explained changes in P. australis extent measured between 2005 and 2019 using high-resolution aerial imagery. A negative correlation between P. australis and estimated cumulative effects scores was observed (R2 = 22 %), and we identified a threshold of cumulative effects above which losses of P. australis became more likely. Using baited remote underwater video, we surveyed fishes over P. australis and non-vegetated sediments to infer and quantify how impacts of cumulative effects to P. australis extent would flow on to fish assemblages. P. australis contained a distinct assemblage of fish, and on non-vegetated sediments the abundance of sparids, which are of importance to fisheries, increased with closer proximity to P. australis. Our results demonstrate the negative impact of multiple stressors on P. australis and the consequences for fish biodiversity and fisheries production across much of the estuary. Management actions aimed at reducing or limiting cumulative effects to low and moderate levels will help conserve P. australis and its associated fish biodiversity and productivity.


Subject(s)
Biodiversity , Ecosystem , Animals , Humans , Australia , Estuaries , Water Quality , Fishes
3.
ACS Appl Mater Interfaces ; 13(49): 58640-58651, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34859674

ABSTRACT

Additive engineering has been applied widely to improve the efficiency and/or stability of perovskite solar cells (PSCs). Most additives used to date are difficult to locate within PSCs as they are small molecules or linear polymers. In this work, we introduce, for the first time, carboxylic acid-functionalized nanogels (NGs) as additives for PSCs. NGs are swellable sub-100 nm gel particles. The NGs consist of poly(2-(2-methoxyethoxy) ethyl methacrylate)-co-methacrylic acid-co-ethylenegylcol dimethacrylate (PMEO2MA-MAA-EGD) particles prepared by a scalable synthesis, which have a diameter of 40 nm. They are visualized in the perovskite films using SEM and are located at the grain boundaries. X-ray photoelectron and FTIR spectroscopy reveal that the NGs coordinate with Pb2+ via the -COOH groups. Including the NGs within the PSCs increased the grain size, decreased nonradiative recombination, and increased the power conversion efficiency (PCE) to 20.20%. The NGs also greatly increase perovskite stability to ambient storage, elevated temperature, and humidity. The best system maintained more than 80% of its original PCE after 180 days of storage under ambient conditions. Tensile cross-cut tape adhesion tests are used to assess perovskite film mechanical integrity. The NGs increased both the adhesion of the perovskite to the substrate and the mechanical stability. This study demonstrates that NGs are an attractive alternative to molecularly dispersed additives for providing performance benefits to PSCs. Our study indicates that the NGs act as a passivator, stabilizer, cross-linker, and adhesion promoter.

4.
RSC Adv ; 11(43): 26813-26819, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-35479979

ABSTRACT

We report the manufacture of fully solution processed photodetectors based on two-dimensional tin(ii) sulfide assembled via the Langmuir-Blodgett method. The method we propose can coat a variety of substrates including paper, Si/SiO2 and flexible polymer allowing for a potentially wide range of applications in future optoelectronic devices.

5.
Chem Mater ; 32(18): 7895-7907, 2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32982044

ABSTRACT

Metal sulfide and metal oxide alloys of the form Mo1-x W x S2 and Mo1-x W x O3 (0 ≤ x ≤ 1) are synthesized with varying nominal stoichiometries (x = 0, 0.25, 0.50, 0.75, and 1.0) by thermolysis of the molecular precursors MoL4 and WS(S2)L2 (where L = S2CNEt2) in tandem and in various ratios. Either transition-metal dichalcogenides or transition-metal oxides can be produced from the same pair of precursors by the choice of reaction conditions; metal sulfide alloys of the form Mo1-x W x S2 are produced in an argon atmosphere, while the corresponding metal oxide alloys Mo1-x W x O3 are produced in air, both under atmospheric pressure at 450 °C and for only 1 h. Changes in Raman spectra and in powder X-ray diffraction patterns are observed across the series of alloys, which confirm that alloying is successful in the bulk materials. For the oxide materials, we show that the relatively complicated diffraction patterns are a result of differences in the tilt angle of MO6 octahedra within three closely related unit cell types. Alloying of Mo and W in the products is characterized at the microscale and nanoscale by scanning electron microscopy-energy-dispersive X-ray spectroscopy (EDX) and scanning transmission electron microscopy-EDX spectroscopy, respectively.

6.
ACS Appl Mater Interfaces ; 12(22): 25125-25134, 2020 Jun 03.
Article in English | MEDLINE | ID: mdl-32383852

ABSTRACT

Thin films of MoS2 bilayer nanoflakes, which are predominantly a single flake thick and with flakes in edge-to-edge contact, have been produced via self-assembled tiling at the planar interface between two immiscible liquids. Films of several square centimeters extent can be produced with a total covered area approaching 90% and over 70% of the film covered by single flakes without overlap. Films produced through liquid/liquid assembly are shown to produce a lower uncovered area fraction and more uniform thickness when compared with films of similar areal coverage produced by the "top-down" techniques of spin coating and spray coating. Statistical analysis of flake coverage data, measured by atomic force microscopy (AFM), shows that liquid/liquid assembly produces a distinctly different variation in film thickness than conventional top-down deposition. This supports the hypothesis that the two-dimensional (2D) confinement of liquid/liquid assembly produces more uniform films. Demonstrator field-effect transistors (FETs) manufactured from the films exhibit mobility and on/off current ratios of 0.73 cm2 V-1 s-1 and 105, respectively, comparable to FETs of similar layout and chemical vapor deposition (CVD)-grown or mechanically cleaved single-crystal MoS2 channel material. This work demonstrates the use of liquid/liquid interfaces as a useful tool for the self-assembly of high-performance thin-film devices made from dispersions of 2D materials.

7.
ACS Appl Mater Interfaces ; 11(35): 32225-32234, 2019 Sep 04.
Article in English | MEDLINE | ID: mdl-31390171

ABSTRACT

Conductive inks for the future printed electronics should have the following merits: high conductivity, flexibility, low cost, and compatibility with wide range of substrates. However, the state-of-the-art conductive inks based on metal nanoparticles are high in cost and poor in flexibility. Herein, we reported a highly conductive, low cost, and super flexible ink based on graphene nanoplatelets. The graphene ink has been screen-printed on plastic and paper substrates. Combined with postprinting treatments including thermal annealing and compression rolling, the printed graphene pattern shows a high conductivity of 8.81 × 104 S m-1 and good flexibility without significant conductivity loss after 1000 bending cycles. We further demonstrate that the printed highly conductive graphene patterns can act as current collectors for supercapacitors. The supercapacitor with the printed graphene pattern as the current collector and printed activated carbon as the active material shows a good rate capability of up to 200 mV s-1. This work potentially provides a promising route toward the large-scale fabrication of low cost yet flexible printed electronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...