Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 101: 283-289, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28322955

ABSTRACT

Contribution of individual BIR domains to Smac antagonism is investigated. Ammonium citrate was used to activate caspase-9 and pro-caspase-9 (D315, D330/A). However, the presence of citrate resulted in autoproteolysis of pro-caspase-9 and its inhibition by XIAP BIR3, which was not observed for apoptosome activated pro-caspase-9 indicating abnormal behavior of pro-caspase-9 in kosmotropic citrate salt. Thus, we used Apaf-1(residues 1-591) to activate caspase-9 through the formation of mini-apoptosome instead. Inhibition of apoptosome by XIAP BIR-1-2-3 was observed to be similar to that of BIR3 indicating that the cleavage of XIAP does not affect its potency. However, BIR1-2-3 was more prone to Smac antagonism due to simultaneous interaction of two BIR domains from XIAP with two N-terminal binding sites of Smac. Therefore, despite the role in caspase-9 activation, Apaf-1 does not influence caspase-9 inhibition by XIAP. In addition, caspase-3, -7 and -9 activity recovery by Smac protein and peptide were more efficient for BIR1-2-3 than for BIR1-2. Consequently, it can be proposed that the presence of multiple BIR domains for XIAP among different species along with dimeric nature of Smac are evolutionary designed to strengthen the antagonistic activity of Smac culminating in efficient induction of cell death.


Subject(s)
Apoptosomes/metabolism , Caspase 9/metabolism , Mitochondrial Proteins/metabolism , X-Linked Inhibitor of Apoptosis Protein/metabolism , Apoptosis , Caspase 9/chemistry , Citric Acid/chemistry , Enzyme Precursors/metabolism , Protein Domains , X-Linked Inhibitor of Apoptosis Protein/chemistry
2.
Cancer Cell Int ; 15: 55, 2015.
Article in English | MEDLINE | ID: mdl-26074734

ABSTRACT

BACKGROUND: Recently, we have reported the induction of apoptosis by 2-amino-4-(3-nitrophenyl)-3-cyano-7-(dimethylamino)-4H-chromene (3-NC) in HepG2, T47D and HCT116 cells with low nano molar IC50 values. In this study, anti-proliferative effects of modified 4-aryle-4H-chromenes derivatives; 2-amino-4-(3-bromophenyl)-3-cyano-7-(dimethylamino)-4H-chromene (3-BC), 2-amino-4-(3-trifluoromethylphenyl)-3-cyano-7-(dimethylamino)-4H-chromene (3-TFC) and 2-amino-4-(4,5-methylenedioxyphenyl)-3-cyano-7-(dimethylamino)-4H-chromene (4, 5-MC) were investigated in three human cancer cell lines. Compared to 3-NC none of the compounds displayed better anti-proliferative effect, although 3-BC appeared somewhat similar. Therefore 3-NC was selected for further studies. METHODS AND RESULTS: Treatment of HepG2, T47D and HCT116 cells with this compound induced apoptosis as visualized by fluorescence microscopic study of Hoechst 33258 stained cells. Induction of apoptosis was quantified by Annexin V/PI staining using flow cytometry. Western blot analysis also revealed that 3-NC down-regulated the expression of anti-apoptotic protein Bcl2 and up-regulated pro-apoptotic protein Bax, in all of the cell lines. Nonetheless, HepG2 cell line was the most responsive to 3-NC as Bax and Bcl2 showed the most dramatic up and down regulation. CONCLUSION: Our previous finding that 3-NC down regulates Inhibitor of Apoptosis Proteins (IAPs) and the present observation that Bax is upregulated and Bcl2 is down regulated upon 3-NC treatment, this chromene derivative has the potential to overcome chemotherapy resistance caused by up regulation of these proteins.

SELECTION OF CITATIONS
SEARCH DETAIL
...